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Abstrat

This is the �rst installment of the Algorithmis Column dediated to Analysis of

Algorithms (AofA) that sometimes goes under the name Average-Case Analysis of Algo-

rithms or Mathematial Analysis of Algorithms. The area of analysis of algorithms (at

least, the way we understand it here) was born on July 27, 1963, when D. E. Knuth

wrote his \Notes on Open Addressing". Sine 1963 the �eld has been undergoing sub-

stantial hanges. We report here how it evolved sine then. For a long time this area

of researh did not have a real \home". But in 1993 the �rst seminar entirely devoted

to analysis of algorithms took plae in Dagstuhl, Germany. Sine then seven seminars

were organized, and in this olumn we briey summarize the �rst three meetings held in

Shloss Dagstuhl (thus \Dagstuhl Period") and disuss various sienti� ativities that

took plae, desribing some researh problems, solutions, and open problems disussed

during these meetings. In addition, we desribe three speial issues dediated to these

meetings.

1 Introdution

The area of analysis of algorithms was born on July 27, 1963, when D. E. Knuth wrote his

\Notes on Open Addressing" about hashing tables with linear probing (f. Knuth's notes

http://pauilla.inria.fr/algo/AofA/Researh/sr/knuth1trait-bwd.gif). The ele-

troni journal Disrete Mathematis and Theoretial Computer Siene (f. the webside

http://dmts.loria.fr/) de�nes this area as follows:

Analysis of Algorithms is onerned with aurate estimates of omplex-

ity parameters of algorithms and aims at prediting the behaviour of a given

algorithm run in a given environment. It develops general methods for obtain-

ing losed-form formulae, asymptoti estimates, and probability distributions for

ombinatorial or probabilisti quantities, that are of interest in the optimiza-

tion of algorithms. Interest is also plaed on the methods themselves, whether

ombinatorial, probabilisti, or analyti. Combinatorial and statistial properties

of disrete strutures (strings, trees, tries, dags, graphs, and so on) as well as

mathematial objets (e.g., ontinued frations, polynomials, operators) that are

relevant to the design of eÆient algorithms are investigated.

�
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Faulty Grant GIFC-9919.
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In fat, the name \analysis of algorithms" did not emerge easily. D. E. Knuth, the founder

of the area, in the abstrat of his talk \The Birth of the Giant Component" [16, 31℄ given

during the �rst Average Case Analysis of Algorithms Seminar, Dagstuhl, July 12 { 16, 1993

has the following to say:

The �rst few minutes of this talk onsidered \the birth of analysis of algorithms"

{ my personal experienes from 31 years ago when I �rst notied how pleasant

it is to �nd quantitative formulas that explain the performane harateristis

of important algorithms. Those experienes profoundly hanged my life! I also

mentioned why it beame neessary to invent a name for suh ativities.

We �nally settled on \Analysis of Algorithms" after onsidering \Preise Analysis of Al-

gorithms", \Mathematial Analysis of Algorithms", and \Average{Case Analysis of Algo-

rithms".

Sine its ineption in 1963 the �eld has been undergoing substantial hanges. We see

now the emergene of ombinatorial and asymptoti methods that allow the lassi�ation of

data strutures into broad ategories that are amenable to a uni�ed treatment. Probabilisti

methods [2, 63℄ that have been so suessful in the study of random graphs [3℄ and hard

ombinatorial optimization problems play an equally important role in this �eld. These

developments have two important onsequenes for the analysis of algorithms: it beomes

possible to predit average behavior under more general probabilisti models [45, 59, 63℄;

at the same time it beomes possible to analyze muh more struturally omplex algorithms

[20, 23, 26, 27, 28, 29, 31, 32, 33, 34, 42, 37, 38, 39, 41, 43, 44, 51, 52, 55, 56, 57, 62, 64, 66℄. To

ahieve these goals the analysis of algorithms draws on a number of branhes in mathematis:

ombinatoris, probability theory, graph theory, real and omplex analysis, number theory

and oasionally algebra, geometry, operations researh, and so forth.

This is the �rst olumn on the analysis of algorithms. Our goal is to desribe some

ativities in this area sine 1993 when the �rst workshop on analysis of algorithms took plae.

We briey desribe the �rst three seminars, outlining some presentations and disussing in

depth some results published in three post{onferene speial issues. In the forthoming

paper (Part II) we shall report about ativities after 1998.

2 Average-Case Analysis of Algorithms, Dagstuhl, 1993

In 1990 during the Random Graphs onferene in Pozna�n Philippe Flajolet, Rainer Kemp and

Helmut Prodinger deided to organize a seminar exlusively devoted to analysis of algorithms.

Suh a workshop took plae in Dagstuhl, July 12 { July 16, 1993 with over thirty partiipants,

inluding the founder of the area, D. E. Knuth. The organizers summarized this meeting in

the Dagstuhl Seminar Report [16℄, where one �nds the following quote:

This meeting was the �rst one ever to be dediated exlusively to analysis of algo-

rithms. The number of invited partiipants was 37, of whih 30 gave presentations

of reent results summarized below. The talks ould be grouped roughly as deal-

ing with Methods or Appliations, both aspets being often losely intertwined.
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Methods were well represented during the seminar. Atually, the �rst talk by D. E. Knuth

on evolution of random graphs belongs to this ategory. This talk was the highlight of the

onferene, and we dwell a little bit on it. Knuth's presentation was based on an over hundred

page paper [31℄ published in Random Strutures & Algorithms o-authored by S. Janson, T.

 Luzak, and B. Pittel. (In a sense, this paper is a ontinuation of the work by Flajolet, Knuth

and Pittel [20℄ where analyti tools were used to study the �rst yles in random graphs.) The

prinipal result of Knuth's paper is that an evolving graph or multigraph on n verties has

at most one omponent through its evolution with probability

5�

18

� 0:8727 as n!1. This

result is obtained by analyti tools of generating funtions and their funtional/di�erential

equations. For example, Knuth proves that the generating funtion G(w; z) for random

multigraphs satis�es

G(w; z) = e

z

+

1

2

Z

1

0

#

2

G(w; z)dw

where # is the operator z

�

�z

. Enumeration of this sort, together with ounting trees, uniyle

omponents and biyli omponents in random graphs are analyzed in Knuth's paper.

Throughout the presentation Knuth refers to the tree funtion de�ned as

T (z) = ze

T (z)

(1)

from whih, by Lagrange's inversion formula, we �nd

[z

n

℄T (z) =

n

n�1

n!

:

In the sequel, we shall use the standard notation [z

n

℄F (z) for the oeÆient at z

n

of the power

series F (z). Of ourse, T (z) generates rooted labeled trees, but it arises in surprisingly many

appliations; it will appear many times in this artile. As a matter of fat, it was generalized

by Knuth and Pittel in [42℄ as well as in [31℄. Let

B(z; y) =

1

(1� T (z))

y

=

1

X

n=0

t

n

(y)

z

n

n!

; (2)

where t

n

(y) is a polynomial of degree n in y, alled the tree polynomial of order n. In

partiular,

t

n

(1) = n

n

:

Furthermore,

t

n

(2) = n

n

(1 + Q(n))

where

Q(n) =

n�1

X

k=1

n!

(n� k)!n

k

is the Ramanujan funtion studied in 1962 by Knuth and denoted by him as Q. Related

identities and funtions appear in an inredible number of analyses: ahing, hashing and

birthday paradox, random number generators and integer fatorization (by Pollard's rho

method), and union-�nd algorithms. Lately, they were even used in soure and hannel

oding (f. [24, 61, 62℄).
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To �nish our disussion about Knuth's presentation, let us mention that another speaker

of the seminar, K. Compton, talked about \Ramanujan's Q-funtion and Asymptotis" and

its appliations to an analysis of a multiproessing systems [7℄.

There were many other presentations in the Methods ategory. We mention here \The

Mellin Transform Tehnology" by P. Flajolet and \Ramanujan and the Average Case Analysis

of Trie Parameters" by Kirshenhofer and Prodinger. The �rst presentation found its way to

the speial issue of Theoretial Computer Siene that was published in 1995.

Appliations group was also well represented. Sedgewik talked about his and Sha�er's

solution of a 20 years old problem onerning the average-ase analysis of heapsort [57℄. Valle�e

demonstrated how the lattie redution algorithm of Gauss an be preisely analyzed. Finally,

there were three talks related to the behavior of data ompression (Jaquet, Szpankowski,

Vitter). For the �rst time a preise analysis of the Lempel-Ziv ompression sheme was

presented (we shall disuss it below in some depth).

During the seminar several open problems were disussed; ten of them were reorded in

the Dagstuhl Report [16℄. We desribe here only one that initiated a long term projet by

Mihael Drmota (see also Reed [54℄) who solved it �nally in 2000 [13, 14℄. (We ome bak

to it in Part II when we disuss the 2000 post-onferene speial issue.) The problem was

posed by P. Flajolet and we quote here from [16℄:

Lu Devroye [10℄ (f. also [11℄) has used probabilisti arguments to show that

the expeted height of a random binary searh tree over n nodes is asymptoti

to  log n, where  is Robson's onstant ( � 4:3). The problem an be reast in

analyti terms as follows: Let

y

h+1

(z) = 1 +

Z

z

0

y

2

h

(t)dt; y

0

(z) = 0; (3)

(so that y

1

(z) =

1

1�z

). Then the generating funtion of average heights

H(z) =

1

X

h=0

[y

1

(z)� y

h

(z)℄ (4)

satis�es

H(z) �



1� z

log

1

1� z

; z ! 1: (5)

The problem is to show this estimate in an extended area of the omplex plane.

Devroye's result follows from (5). A onsequene of an analyti proof of (5) should

be to derive estimates on the variane (the exat order is yet unknown) of height,

and most probably also a limiting distribution result.

It turned out that one needs more terms in (5) to obtain the onjetured results onerning

the variane and the limiting distribution. Indeed, the expeted value of the height followed

from (5), as proved by Drmota [13℄, however, for the variane (whih turns out to be bounded)

Drmota [14℄ and Reed [54℄ needed more terms of the asymptoti expansion of the height plus

additional onentration properties. The limiting distribution is not yet proved rigorously,

however, a heuristi argument based on the WKB method was reently presented in [36℄.
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In 1995 H. Prodinger and W. Szpankowski edited a speial issue entitled \Mathematial

Analysis of Algorithms" in Theoretial Computer Siene, 144, No. 1-2. It was dediated

to D. E. Knuth, the founding father of the area. This speial issue was meant to be a post

Dagstuhl-seminar olletion of results, however, we advertised it in an open all for papers.

We aepted 10 papers and Philippe Flajolet wrote an invited paper that we disuss in some

depth below, together with a few others.

In the invited paper [19℄ Flajolet and his olleagues X. Gourdon and P. Dumas present a

uni�ed and essentially self-ontained approah to the Mellin transform. The Mellin transform

(Hjalmar Mellin 1854{1933, Finish mathematiian) is the most popular transform in analysis

of algorithms. It is de�ned for a real-valued funtion f(x) on (0;1) as

f

�

(s) =

Z

1

0

f(x)x

s�1

dx

provided the above integral exists, with s being a omplex number. D. E. Knuth, together

with De Bruijn, introdued it in the orbit of disrete mathematis in the mid-1960s, however,

Flajolet's shool systematized and applied the Mellin transform to myriad problems of ana-

lyti ombinatoris and analysis of algorithms. The popularity of this transform stems from

two important properties. It allows the redution of ertain funtional equations to algebrai

ones, and it provides a diret mapping between asymptoti expansions of a funtion near zero

or in�nity and the set of singularities of the transform in the omplex plane (f. Table 1).

In analysis of algorithms and analyti ombinatoris one often deals with funtional equa-

tions like

f(x) = a(x) + �f(xp) + �f(xq); (6)

where �; � are onstants, and a(x) is a known funtion (e.g., think of the divide-and-onquer

reursion or splitting proesses). The Mellin transform maps the above funtional equation

into an algebrai one that is easier to solve and hene allows us to reover f(x), at least

asymptotially as x ! 0 or x ! 1 (f. property (M4) in Table 1). Indeed, the Mellin

transform of f(x) de�ned in (6) is

f

�

(s) = a

�

(s) + �p

�s

f

�

(s) + �q

�s

f

�

(s)

provided there is a strip in the omplex plane where f

�

(s) exists.

Flajolet and his olleagues onentrate in [19℄ on sums like

G(x) =

1

X

k=0

�

1� e

�x=2

k

�

and H(x) =

1

X

k=1

(�1)

k

e

�k

2

x

log k;

whih are typial examples of a harmoni sum

X

k

a

k

f(b

k

x)

whose Mellin transform beomes (f. property (M3) in Table 1)

X

k

a

k

b

�s

k

f

�

(s):
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(M1) Diret and Inverse Mellin Transforms. Let  belong to the fundamental strip

de�ned below.

f

�

(s) := M(f(x); s) =

Z

1

0

f(x)x

s�1

dx () f(x) =

1

2�i

Z

+i1

�i1

f

�

(s)x

�s

ds: (7)

(M2) Fundamental Strip. The Mellin transform of f(x) exists in the fundamental strip

<(s) 2 (��;��), where

f(x) = O(x

�

) (x! 0); f(x) = O(x

�

) (x!1)

for � < �.

(M3) Harmoni Sum Property. By linearity and the sale rule M(f(ax); s) =

a

�s

M(f(x); s),

f(x) =

X

k�0

�

k

g(�

k

x) () f

�

(s) = g

�

(s)

X

k�0

�

k

�

�s

k

: (8)

(M4) Mapping Properties (Asymptoti expansion of f(x) and singularities of f

�

(s)).

f(x) =

X

(�;k)2A



�;k

x

�

(log x)

k

+ O(x

M

) () f

�

(s) �

X

(�;k)2A



�;k

(�1)

k

k!

(s + �)

k+1

: (9)

| (i) Diret Mapping. Assume that f(x) admits as x ! 0

+

the asymptoti expansion (9)

for some �M < �� and k > 0. Then for <(s) 2 (�M;��), the transform f

�

(s) satis�es the

singular expansion (9)

| (ii) Converse Mapping. Assume that f

�

(s) = O(jsj

�r

) with r > 1, as jsj ! 1 and

that f

�

(s) admits the singular expansion (9) for <(s) 2 (�M;��). Then f(x) satis�es the

asymptoti expansion (9) at x = 0

+

.

Table 1: Main Properties of the Mellin Transform.

From the inversion formula of the Mellin transform one obtains (f. property (M1) in Table 1)

X

k

a

k

f(b

k

x) =

1

2�i

Z

+i1

�i1

X

k

a

k

b

�s

k

f

�

(s)x

�s

ds:

Shifting the line of integration and olleting all residues leads to the desired asymptotis of

the harmoni sum. This basi Mellin transform formula for harmoni sum is the starting point

for Flajolet and his olleagues to a readable aount on Mellin transform and its appliation

to analysis of algorithms (f. also [22, 45, 63℄). For a summary of Mellin transform properties

the reader may onsult Table 1.

Finally, we say a few words about the Jaquet and Szpankowski paper [28℄ that appeared

in the same speial issue. It was devoted to the analysis of the Lempel-Ziv'78 data ompres-

sion sheme, and its relation to digital searh trees. This sheme partitions a sequene of
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length n into variable phrases suh that a new phrase is the shortest substring not seen in

the past as a phrase. The parameter of interest is the number M

n

of phrases that one an

onstrut from a sequene of length n. Its behavior determines the ompression ratio of this

sheme. It was known that for stationary and ergodi soures

M

n

�

nh

logn

; (a:s:)

where h is the entropy of the soure. However, to gain more insights (e.g., to ompute the

average redundany of the ode as in [44℄) one needs more re�ned information about M

n

.

In partiular, Ziv asked in 1978 about the limiting distribution of M

n

onjeturing that it

must be normal. Aldous and Shields [1℄ solved the problem for memoryless unbiased soures

(i.e., eah symbol is generated by the same probability independently of others), however, the

authors of [1℄ insisted that \: : : we are not optimisti about �nding a general result. We believe

the diÆulty of our normality result is intrinsi : : :". In fat, the authors of [1℄ were not able to

estimate preisely the variane due to some osillation. The problem of variane was solved

by Kirshenhofer, Prodinger, and Szpankowski [34℄, still for unbiased memoryless soures.

Jaquet and Szpankowski set out to extend Aldous and Shields results to biased memoryless

soures. Not surprisingly, the method used by the authors of [28℄ was mostly analyti, but

with a help from probabilisti methods (e.g., Billingsley's renewal lemma) needed to translate

analyti results obtained for digital searh trees to limiting distribution of the Lempel-Ziv

sheme.

As mentioned above, the problem is redued to �nding the limiting distribution of the total

path length in a digital searh tree built from independently generated strings. Let L(z; u) be

the bivariate probability generating funtion of the path length in the Poisson model in whih

the �xed number of strings is replaed by a random number of strings generated aording

to the Poisson distribution. It satis�es the following di�erential-funtional equation

�L(z; u)

�z

= L(pzu; u)L(qzu; u) (10)

with L(z; 0) = 1, where p (q = 1 � p) is the probability of generating a \0". Usually, the

Poisson model is easier to solve than the original Bernoulli model, but is far from being trivial.

In fat, it is known only how to obtain asymptoti results for the Poisson model for z !1 in

a one. One it is proved that logL(z; u) = �(z

�(u)

) for some funtion �(u) in a one around

the real axis (and all derivatives of L(z; u) with respet to u are proved to be bounded),

the Poisson model an be asymptotially solved. Then the authors of [28℄ \wrestle" with a

partiularly ompliated depoissonization in order to translate the Poisson model bak to the

the Bernoulli model (for a more detailed exposition of analyti depoissonization the reader

is referred to [29℄). The �nal outome of this tour de fore is a pretty omplete analysis of

the limiting distribution and well as the �rst two moments. The authors of [28℄ propose also

a large deviation result, however, the exat exponent is not determined (and is still an open

problem; see Conjeture 1 below).

Atually, we �nish this setion with an open problem regarding the analysis of the Lempel-

Ziv sheme for a Markovian soure. We formulate it is a onjeture.
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Conjeture 1 Consider a (stationary, irreduible and aperiodi) Markovian soure with

transition probabilities fp

ij

g

V

i;j=1

. Set �(x) =

x

H

log x �

A

H

x + O(log x) where A =  �

1 +

_

�(�1) +

�

�(�1)

2

_

�

2

(�1)

� #��

_

 (�1) + Æ

1

(lnm) with

_

�(s) and

�

�(s) are the �rst and the seond

derivative of the eigenvetor �(s) of P (s) = fp

�s

ij

g

m

i;j=1

, while # is a onstant that we an

expliitly ompute. De�ne x

n

as a solution of �(x

n

) = n, that is,

x

n

=

nH

log n

 

1 +

log log n

log n

+

A� logH

log n

+O

 

(log log n)

2

log

2

n

!!

:

Then

EM

k

n

= x

k

n

0

�

1 + O

0

�

s

log n

n

1

A

1

A

+ O

 

n

k�1

log

k�1

n

!

(11)

VarM

n

�



2

H

3

n

log

2

n

+ O(1); (12)

M

n

�EM

n

p

VarM

n

! N(0; 1); (13)

(14)

lim

n!1

1

n

log Pr

�

M

n

> �

�1

�

n

1� y

��

= �

I(y)

1� y

(15)

where 0 < y < 1 and I(y) is a funtion (at this point we still do not know how to ompute

this funtion). Moreover, moments of M

n

onverge to the appropriate moments of the normal

distribution.

The above formulas, exept (15), are natural extensions of [28℄ and reent results pre-

sented in [30℄ onerning the Lempel-Ziv phrase distribution for Markov soures. The large

deviation result (15) is not even proved for memoryless soures, however, based on known

large deviation results for other odes (f. [49℄) we expet this formula to be true (provided

one �nds an expression for the exponent I(y)).

3 Average-Case Analysis of Algorithms, Dagstuhl, 1995

The seond Average-Case Analysis of Algorithms seminar took plae in Dagstuhl, July 3-7,

1995. It was organized by P. Flajolet, R. Kemp, H. Prodinger, and R. Sedgewik. In the

post-onferene abstrat [17℄ the organizers have the following to say:

The �eld is undergoing tangible hanges. We see now the emergene of ombi-

natorial and asymptoti methods that permit to lassify data models into broad

ategories that are suseptible of uni�ed treatment. This has two important onse-

quenes for the analysis of algorithms; it beomes possible to predit average-ase

behavior of more omplex data models (for instane, nonuniform models and even

Markovian dependenies); at the same time it beomes possible to analyze muh

more struturally omplex algorithms sine we have a muh higher level grasp on

the average-ase analysis proess.
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On the analyti side, there were talks on diagonal Poisson transform (Viola [51℄) and

analyti depoissonization (Jaquet and Szpankowski [29℄). These tools of general nature are

strongly tied with the analysis of hashing and digital trees or data ompression. Tools for

extrating limiting distributions were disussed by Drmota and Soria (f. [15℄)

In Dagstuhl 1995 there were several talks on trees and their analyses (Flajolet, Hubalek,

Gittenberger, Prodinger, Steyaert). For example, in an interesting paper [52℄ \Solution of

a Problem of Yekutieli and Mandelbrot" H. Prodinger solved an open problem posed by

physiists. The author of [52℄ �rst reminded us that the register funtion of a binary tree

is de�ned reursively as follows: leaves get the register number equal to 0; while if a left

subtree was assigned the register number a and the right subtree the number b, then the

whole tree obtains the larger of these two, if there are di�erent, and a+ 1 if a = b. Yekutieli

and Mandelbrot asked the following question: if the tree has register funtion p, how many

maximal subtrees of register funtion p � 1 are there? Experiments indiated that the av-

erage value osillates between 3 and 4. Using generating funtions, Mellin transforms and

singularity analysis Prodinger established in [52℄ the preise value to be 3:341266 + Æ(log

4

n)

where Æ(log

4

n) is an osillating funtion of small amplitude.

Finally, there were several talks on new appliations of analysis of algorithms: M. R�egnier

presented a pattern mathing approah for the DNA sequene analysis; G. Louhard disussed

omputing with faulty proessors; parallel simulations were main topi of A. Greenberg's

talk; average-ase analysis of pre�xes of formal languages was presented by R. Kemp; Rob-

son talked about simulation of trees; Gonnet about omputer algebra; Gardy desribed the

oupany problem, and Wright spoke about parallel sheduling.

The seond Dagstuhl meeting was oupled with a speial issue of Random Strutures &

Algorithms, 10, No. 1-2, 1997 edited by P. Flajolet and W. Szpankowski. A. Frieze and C.

MDiarmid in the invited paper \Algorithmi Theory of Random Graphs" disussed how to

use random graphs as models for the average ase analysis of graph algorithms. The issue

ontains eleven aepted papers on analysis of algorithms on (random) strings, trees, per-

mutations, words, and graphs. For example, random string models were disussed in the

paper by Mahmoud, R�egnier and Smythe [47℄ who analyzed the Boyer-Moore pattern math-

ing algorithm. Random permutations lie at the heart of all sorting and searhing algorithms.

Kirshenhofer, Prodinger and Martinez [35℄ obtained a preise analysis of \quikselet". Shell-

sort was analyzed by S. Janson and D. E. Knuth [32℄ who sharpened A. C. Yao's arguments to

obtain a re�ned analysis of the algorithm. Random trees, as expeted, were well represented

in the speial issue. Shmid [58℄ applied tree modes to the analysis of sheduling in real

time systems. Finally, probabilisti methods were used by MDiarmid, Johnson, and Stone

[48℄ to investigate the growth of a minimum spanning tree given random edge weights, while

Co�man, Johnson, Shor and Weber [5℄ developed probabilisti properties of random walks

to analyze the �rst-�t strategy for bin paking.

To wrap up this brief presentation, we say a few more words about an important paper

by Drmota [12℄ who in \Systems of Funtional Equations" disussed asymptoti properties

of the oeÆients of generating funtions satisfying a ertain system of funtional equations.

Standing on shoulders of Bender, Rihmond, Flajolet, and Odlyzko, Drmota is interested in

9



an analyti solution y(x; z) of the following (system of) funtional equation(s)

y = F (x; y; z): (16)

Examples of suh equations are:

y(x; z) = xz +

xy(x; z)

1� y(x; z)

that represents the number of planted plane trees with given number of leaves; and

y(x; z) =

x

1� y(x; z)

� xy(x; z)

d

+ xzy(x; z)

d

whih is the generating funtion for the numbers y

n;k

of planted plane trees of size n and k

nodes of outdegree d. Drmota redues the analysis of (16) to the following form

y(x; z) = g(x; z) � h(x; z)

q

1� x=f(z)

with proper analyti funtions g(x; z), h(x; z), and f(z). This form is a onsequene of the

Weierstrass preparation theorem. In the next step Drmota applied the Flajolet and Odlyzko

[21℄ transfer theorem to obtain the asymptotis of y

n

(z) = [x

n

℄y(x; z). Finally, the saddle

point method applied to the Cauhy formula ompleted the derivations.

In summary, Drmota proves that the oeÆient (we deal here only with the one dimen-

sional ase) of

y(x; z) =

X

n;m

y

n;m

x

n

z

m

has the following asymptoti solution

y

n;m

=

ax

�n

0

2�n

2

p

2�

exp

 

(m� �n)

2

2n�

2

!

+ O(n

�1=2

)

where a; x

0

; � and � are ertain onstants. In the multidimensional ase one obtains a similar

expansion. The above formula is an example of a loal limit Gaussian approximation.

4 Average-Case Analysis of Algorithms, Dagstuhl, 1997

The third Average-Case Analysis of Algorithms seminar took plae in Dagstuhl, July 7-11,

1997. It was organized by P. Flajolet, R. Kemp, H. Mahmoud, and H. Prodinger. Twenty

eight talks were given ranging from methodologial to applied, overing suh diverse prob-

lems as string mathing and omputational biology, hashing, tree data strutures, seletion

problems in statistis, data ompression and information-theory, adaptive data strutures

and learning, real-time and system programming, as well as omputer algebra. We disuss

some of them below.

Urn models were presented by Gardy who stressed their diverse appliations to hashing,

alloations or learning. Guy Louhard, a pioneer of the Brownian motion approah to analysis

of algorithms (f. [43℄) used Brownian exursion loal times to the analysis of random trees,
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while Lu Devroye presented a unifying approah to the analysis of depth and height for

random searh trees.

Analyti ombinatoris were well represented in talks of Flajolet (on Gaussian laws),

Odlyzko (on onstrained set partitions) and Salvy (on automati saddle point methods).

Pattern in strings are of interest to a number of appliations suh as retrieval, indexing,

omputational biology, soure oding, and so forth. Several talks were devoted to this topi.

R�egnier presented a generalization of the Guibas and Odlyzko \autoorrelation" to sequenes

generated by Markovian soures (f. [55℄). Nebel applied formal languages to an interesting

enumerative problem on strings. Vall�ee used dynami systems approah to analyze digital

tree for the so alled dynami soures (f. [65℄).

As expeted, trees have attrated a lot of interest from AofA ommunity, however, om-

binatorial models still pose intriguing questions. Kemp analyzed balaned trees. Drmota had

the �rst \rak" into the problem of height in a binary searh tree using analyti approah,

as suggested by Flajolet during the �rst Dagstuhl meeting. Mahmoud gave a solution to the

quikselet algorithm, whih an be viewed as a one-sided quiksort (a omplete analysis of

the regular quiksort problem is still needed). Finally, Bob Sedgewik surveyed some sixty

open problems introdued by Knuth in his Vol. 3 and disussed about twenty of them that

were solved. Three open problems were disussed in detail, namely the average ase analysis

of shellsort, balaned trees, and development of sorting networks that are substantially better

than Bather's network.

In passing, we should mention that there were several talks illustrating appliations

of analysis of algorithms. Golin foused on omputational geometry, Fill disussed self-

organizing searh, Co�man gave a talk on reservation poliies in ommuniation systems (f.

[6℄, Jaquet analyzed an on/o� queue, and Shmid surveyed some reent results in real-time

systems (f. [58℄).

We end this brief presentation with the highlight of the Dagstuhl 1997 meeting, namely

a de�nite solution to the variane analysis of linear probing hashing that was presented for

the �rst time by Poblete and Viola. This unfolding story has it ontinuation in the speial

issue that we disuss next.

Following our tradition, we edited a speial issue of Algorithmia, vol. 22, No. 2, 1998

(eds. H. Prodinger and W. Szpankowski), where we olleted more de�nite results presented

during the last AofA meeting. This was very \speial" speial issue. It was dediated to \: : :

our olleague, teaher, and friend Philippe Flajolet on the oasion of his 50th birthday".

The editors prepared an artile on \Philippe Flajolet's Researh in Analysis of Algorithms"

[53℄ desribing Flajolet's aomplishments in analysis of algorithms.

In my opinion this speial issue was one of the best so far devoted to analysis of algorithms

that I was involved in. A number of researh results were published that solved long standing

open problems. In partiular, we dwell on two results, namely that of linear probing hashing

by Flajolet, Poblete, Viola [23℄ and Knuth [40℄, and (in Knuth's words) \an exiting paper"

[64℄ by Vall�ee who for the �rst time analyzed rigorously the binary Eulidean gd algorithm

proving a 20-year old onjeture of Brent.

Let us reall that in linear probing hashing a table of length m is set up together with

a hash funtion h that maps n � m keys (randomly) to the m ells of the hash table. A
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olletion of n objets (keys) enter sequentially into the hash table so that element x is plaed

at the �rst unoupied loation starting from h(x) in a yli order. The displaement is the

number of ollisions until an unoupied ell is found. The total displaement orresponding

to a sequene of hashed values is the sum of all individual displaement, and it is usually

denoted as d

m;n

. In his 1963 paper Knuth proved that

E[d

m;n

℄ =

n

2

(Q

0

(m;n� 1)� 1) (17)

where Q

r

(m;n) is the generalized Ramanujan's funtion de�ned as

Q

r

(m;n) =

X

k�0

 

r + k

k

!

n

m

n� 1

m

� � �

n� k + 1

m

:

Here are Knuth's personal remarks from [40℄ regarding this problem:

The problem of linear probing is near and dear to my heart, beause I found

it immensely satisfying to dedue (17) when I �rst studied the problem is 1962.

Linear probing was the �rst algorithm that I was able to analyze suessfully,

and the experiene had a signi�ant e�et on my future areer as a omputer

sientist. None of the methods available in 1962 were powerful enough to dedue

the expeted square displaement, muh less the higher moments, so it is an even

greater pleasure to be able to derive suh results today from other work that has

enrihed the �eld of ombinatorial mathematis during a period of 35 years.

We end up this essay with a pretty detailed desription of the derivation that Knuth was

able to arry on after 35 years. In fat, we follow Knuth as well as Flajolet, Poblete and

Viola [23℄ whose analysis lead to a distribution of the total displaement.

The most interesting behavior of linear probing hashing ours when m = n or m = n�1

whih we shall all full and almost full tables, respetively. Here, we only onsider the ase

when n = m� 1 and write d

n

= d

n;n�1

. Using Knuth's irular symmetry argument we shall

assume from now on that the nonempty ell is the rightmost one. De�ne F

n;k

as the number

of ways of reating an almost full table with n elements (with empty ell in the rightmost

loation) and total displaement k. The bivariate generating funtion is denoted as

F (z; u) =

X

n;k�0

F

n;k

u

k

z

n

n!

:

Following Knuth [40℄, and Flajolet, Poblete and Viola [23℄ we observe that F

n

(u) = n![z

n

℄F (z; u)

satis�es

F

n

(u) =

n�1

X

k=0

 

n� 1

k

!

F

k

(u)(1 + u + � � �+ u

k

)F

n�1�k

(u):

Indeed, onsider an almost full table of size n (and length n+ 1 with the rightmost loation

empty). Just before the last element is inserted there is another empty ell, say at position

k + 1. The address of the last element belongs to the interval [1::k + 1℄ whih orresponds

to the displaement in the interval [0::k℄. The above funtional equation follows. Observe
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also that after some simple algebra this equation satis�es the following di�erential-funtional

equation

�

�z

F (z; u) = F (z; u) �

F (z; u) � uF (uz; u)

1� u

(18)

for juj < 1. Then, denoting by F

hli

(z; 1) the lth derivative of F (z; u) at u = 1, the rth

fatorial moment of d

n

is

E[d

n

(d

n

� 1) � � � (d

n

� r + 1)℄ =

[z

n

℄F

hri

(z; 1)

[z

n

℄F

h0i

(z; 1)

:

We must solve (18) in order to ompute the fatorial moments. We shall follow now

Knuth's solution [40℄. After introduing

A

n

(u) = (u� 1)

n

F

n

(u);

B

n

(u) = (u

n

� 1)A

n�1

(u);

we observe that the exponential generating funtions A(z; u) and B(z; u) satisfy

A(z; u) = e

B(z;u)

:

But C

n

(u) = A

n�1

(u) beomes

B(z; u) = C(zu; u)� C(z; u);

and

C

0

z

(z; u) = A(z; u) = e

C(zu;u)�C(z;u)

:

Finally, the substitution G(z; u) = e

C(z;u)

leads to

G

0

z

(z; u) = G(zu; u)

whih translates into

u

n

G

n

(u) = G

n+1

(u):

Therefore,

G(z; u) =

1

X

n=0

u

n(n�1)=2

z

n

n!

;

and �nally (with u = 1 + w)

1

X

n=1

w

n�1

F

n�1

(1 + w)

z

n

n!

= ln

 

1

X

n=0

(1 + w)

n(n�1)=2

z

n

n!

!

: (19)

At this point Knuth observes that the right-hand side of (19) is the exponential generating

funtion for labeled onneted graphs. After introduing the exponential generating funtion

W

k

(z) =

1

X

n=1

C

n�1+k;n

z

n

n!
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where C

m;n

is the number of onneted labeled graphs on n verties and m edges, Knuth

onludes that

F (z; 1 + w) = W

0

0

(z) + wW

0

1

(z) + w

2

W

0

2

(z) + � � � :

But W

k

(z) an be expressed in term of the tree-generating funtion T (z) de�ned in (1). Using

Wright's onstrution [67℄ (f. also [31℄) Knuth �nally arrives at

F (z; 1 + w) =

T (z)

z

f(w; T (z))

where f(w; t) has the following leading terms

f(w; t) = 1 + w

t

2

2(1 � t)

2

+O(w

2

):

This allows to ompute all fatorial moments of the total displaement. In partiular,

Var[d

n

℄ =

10� 3�

24

n

3

+

16� 3�

144

n

2

+ O(n

3=2

);

whih solves the 35 year old problem of Knuth. As a matter of fat, an exat formula

through the funtion Q

r

(m;n) on the variane an be derived as shown in [23, 40℄. Even

more, Flajolet, Poblete and Viola were able to prove that

d

n

(n=2)

3=2

has the Airy distribution.

I refer the interested reader to [23℄ for details of the derivations.

As a onsequene of the results presented in [23, 40℄, ombinatorial relationships between

total displaement in linear probing, onnetivity in graphs, inversions in trees, area of exur-

sions and path length in trees, were re-disovered and plaed in an uni�ed framework. This

initiated several new researh lines in the AofA ommunity, and will be further disussed in

the forthoming Part II of this artile.

Finally, we devote the last part of this survey to \an exiting paper" by B. Vall�ee [64℄

who ompleted the work of Brent [4℄ on the analysis of the binary greatest ommon divisor

(gd) algorithm. Let us reall that the Eulidean gd algorithm �nds the greatest ommon

divisor of two integers, say u and v by using divisions and exhanges as below:

gd(u; v) = gd(v mod u; u):

Heilbronn and Dixon proved independently that the average number D

N

of divisions on

random inputs less than N is asymptotially

D

n

�

12 log 2

�

2

logN:

However, there is a more eÆient implementation of the Eulidean algorithm alled the

binary gd that does not require divisions. It works as follows: Let

val

2

(u) := maxfb : 2

b

jug;

that is, the largest b suh that 2

b

divides u. The binary Eulidean algorithm is based on the

following reursion

gd(u; v) = gd

�

u� v

2

val

2

(u�v)

; v

�

:
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The hallenge is to analyze the number of operations of this algorithm.

Vall�ee �rst redues the problem to a ontinued fration expansion. Indeed, observe that

v = u + 2

b

1

v

1

; v

1

= u + 2

b

2

v

2

; v

l�1

= u + 2

b

l

v

l

represent the sequene of the shifts until the �rst interhange between u and v ours. If

k = b

1

+ b

2

+ � � �+ b

l

and

a = 1 + 2

b

1

+ � � �+ 2

b

1

+b

2

+���+b

l�1

;

then

u

v

=

1

a + 2

k

v

l

u

:

In general, the rational u=v has a unique ontinued fration expression:

u

v

=

1

a

1

+

2

k

1

a

2

+

2

k

2

.

.

.

.

.

.

+

2

k

r�1

a

r

+ 2

k

r

:

The parameters of interest are:

� The height or the depth (it equals the number of exhanges); here, it is equal to r.

� The total number of operations that are neessary to obtain the expansion; if p(a)

denotes the number of 1 in the binary expansion of the integer a, it is equal to p(a

1

) +

p(a

2

) + : : : + p(a

r

) � 1; when the a

i

's are the denominators of the binary ontinued

fration.

� The total sum of exponents of 2 in the numerators of the binary ontinued fration:

here, it is equal to k

1

+ k

2

+ � � �+ k

r

.

Vall�ee analyzes these three parameters in a uniform manner using an operator alled now

the Vall�ee operator:

V

2

[f ℄(x) :=

X

k�1

X

a odd;

1�a<2

k

�

1

a + 2

k

x

�

2

f

�

1

a + 2

k

x

�

;

de�ned on a suitable Hardy spae of holomorphi funtions inside a disk that ontains the

real segment ℄0; 1℄. Vall�ee proves that all three parameters are asymptoti to A logN where

the onstant A depends on the dominant eigenvetor of the operator V

2

.

Briey, Vall�ee uses various tools to prove her results suh as generating funtions, Ruelle

operators, Tauberian methods, funtional analysis. First, she applies lassial tools of analysis

of algorithms, namely generating funtions whih in the ontext of omputational number

theory are Dirihlet series. Seond, Vall�ee shows that these generating funtions are losely

linked to the operator

V

s

[f ℄(x) :=

X

k�1

X

a odd;

1�a<2

k

�

1

a + 2

k

x

�

s

f

�

1

a + 2

k

x

�
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whih is a Ruelle operator. More preisely, the generating funtions involve the quasi{inverse

operator �

s

:= (I � V

s

)

�1

, and the expetations of parameters of interest are partial sums

of oeÆients of these Dirihlet series. Thus the main results follow from an appliation of

Tauberian Theorems due to Delange, provided that they an be applied. Vall�ee proves this

is the ase by showing that the operator V

s

ating in a suitable Banah spae has a \spetral

gap", i.e. a unique dominant eigenvalue separated from the remainder of the spetrum by a

gap. When ating on a Hardy spae of holomorphi funtions relative to a suitable disk, the

operator V

s

is proven to be ompat and positive for real values of parameter s, and then

it has a spetral gap. Sine Tauberian theorems link the asymptotis of oeÆients to the

dominant singularity of the funtion, the onstant A involves the dominant singularity of the

quasi{inverse (I � V

s

)

�1

.

In summary, a onsequene is that the binary gd algorithm has average-ase omplex-

ity asymptoti to A logN , where A is a omputable onstant that is mathematially well-

haraterized in terms of spetral harateristis of Vall�e's operator.

5 Conlusion

In this survey we briey reviewed the �rst three meetings in Shloss Dagstuhl (so alled

\Dagstuhl Period") of the newly reated Analysis of Algorithms Group. We presented some

ideas, solutions, and disussed some open problems. In Part II we shall desribe the next �ve

meetings of AofA that starting from 1998 beame annual events.

The emergene of AofA as an organized �eld of researh, whih began with the Dagstuhl

seminars, started a transformation from a olletion of results on individual problems to a

study of methods of general appliability, to an understanding of relationships to lassial

methods of analysis, ombinatoris, and disrete probability, to a web of knowledge that

applies in a broad ontext.

As D. E. Knuth mentioned in the onlusion of his paper [40℄, none of the methods

he used in his work on linear probing hashing were available in 1962. We are now in a

muh better situation. Knuth himself popularized the �eld in his three volumes of The Art

of Computer Programming [37, 38, 39℄, and quite reently in Seleted Papers on Analysis

of Algorithms [41℄. Sedgewik and Flajolet prepared the �rst undergraduate textbook [59℄

that is widely used. They are in the proess of writing a monograph on Analyti Com-

binatoris (f. http://pauilla.inria.fr/algo/flajolet/Publiations/books.html).

H. Hamoud and M. Hofri ontributed to popularizing the area by publishing �ne books

[25, 45, 46℄, while A. Odlyzko taught us in [50℄ the art of asymptotis. Finally, I myself put

up a book on Average Case Analysis of Algorithms on Sequenes [63℄ devoted to probabilisti

and analyti methods used in analysis of algorithms. The reader is referred to these books

as a good starting point to learn more about our �eld.

In passing we should �nally add that in 1997 Philippe Flajolet and Helmut Prodinger

started a webpage of AofA. Everybody is invited to http://pauilla.inria.fr//algo/AofA/

to read about fasinating story about linear probing hashing, binary Eulidean algorithms,

wobbles in analysis of algorithms, and other new developments.
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