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Abstract

This article is a continuation of our previous Algorithmic Column [54] (EATCS, 77,
2002) dedicated to activities of the Analysis of Algorithms group during the “Dagstuhl—
Period” (1993-1997). The first three meetings took place in Schloss Dagstuhl, Germany.
The next three meetings of AofA were in Princeton (1998), Barcelona (1999), and Krynica
Morska (near Gdansk, 2000). We shall present here some research problems that have
been the highlights of these three meetings. Three special issues [42, 31, 43] were also
published after these meetings and we briefly summarize them.

1 Introduction

The area of analysis of algorithms was born on July 27, 1963, when D. E. Knuth wrote his
“Notes on Open Addressing” about hashing tables with linear probing. Since then the area
has been undergoing substantial changes; we now use various methods from different branches
of mathematics: combinatorics, probability theory, graph theory, real and complex analysis,
number theory and occasionally algebra, geometry, operations research, and so forth.

In 1993 the first meeting entirely devoted to the analysis of algorithms was organized by
P. Flajolet, R. Kemp and H. Prodinger at Schloss Dagstuhl (Germany). After that there
have been two further meetings in Dagstuhl (1995, 1997). Some of the research activities of
that time have been described in the first Algorithmic Column [54].

The emergence of AofA as an organized field of research, which began with the Dagstuhl
seminars and continues till nowadays, started a transformation from a collection of results
on individual problems to a study of methods of general applicability, to an understanding
of relationships to classical methods of analysis, combinatorics, and discrete probability, to a
web of knowledge that applies in a broad context.

In this second Algorithmics Column on analysis of algorithms we concentrate on activi-
ties of the next tree meetings: Princeton (1998), Barcelona (1999) and Krynica Morska (near
Gdansk, 2000). Most of the material we outline here is published in three special issues: Al-
gorithmica, 29, 2001, [42], Algorithmica, 31, 2001 [31], and Random Structures & Algorithms,
19, 2001, [43] (dedicated to Don Knuth on the occasion of his (100)gth birthday).

*This research was supported in part by the NSF Grant CCR-0208709.




2 The Contraction Method for Recursive Algorithms

Recursive algorithms are popular tools in computer science. Quicksort is one of the most
prominent one. Recursive structures are often subject of precise mathematical analysis since
usually a parameter of interest can be translated into recurrences (e.g. the number of com-
parisons in Quicksort). Assuming that a properly normalized version of such a parameter
has a limiting distribution (under a probabilistic model), the above recurrence may further
translate into a fixed point equation for the distribution. The main thrust of the contraction
method introduced by Rosler and Riischendorf [51] is to solve such a fixed point equation
using Banach’s fixed point equation.

In what follows we describe the contraction method when applied to the number of com-
parisons L, of Quicksort sorting n items. The recursive description of Quicksort translates
to!

LLn) =L (Lz, 1+ L0z, +n-1), n>2, (1)

where Ly = Ly = 0, Ly = 1, Z, is uniformly distributed on {1,2,...,n}, £(L;) = £(L;), and
Zn, Lj, fj (1 < j < n) are independent. For example, it is an easy exercise to obtain explicit
representations for the expected value EL,. From (1) we find the recurrence

1 n
EL, =n—1+— > (ELj_1 +EL,_j)

j=1
that can be explicitly solved yielding
ntl
EL, = 2(n—|—1)];1E—4(n—l—1)+2

= 2nlogn+n(2y —4)+2logn +2y+ 1+ O(logn)/n)

with v = 0.57721... being Euler’s constant.
Let us now consider the random variable Y;, = (L, — EL,)/n that satisfies the following

equation

Zn —1 n— Zy

LY) =L (an_l Vs + cn(zn>) L n>2,

where Yy =Y =0, Z, is uniformly distributed on {1,2,...,n}, and L(Y;) = L(Y ), and Z,,
Y;, Y, (1 <j <n) are independent. Furthermore,
n—1 1

en(j) = ——+ ~ (BLj_1 + BLy; — ELy).

Thus if Y;, has a limiting distribution Y, then it has to satisfy
LY) =L (UY +(1-0)Y +¢(U)), 2)
where U is uniformly distributed on [0,1], £(Y) = £(Y), U,Y,Y are independent, and

c(x) =2zlogz +2(1 — x)log(l —z) + 1.
"We denote by £(X) the distribution function of X.




The first step is to show that (2) has actually a unique solution with EY = 0.
Let D denote the space of distribution functions with finite second moment and zero first
moment. Then the Wasserstein metric dy is defined as

dy(F,G) =inf | X — Y2,

where || - |2 denotes the Lo-norm and the infimum is taken over all random variables X with
distributions function F' and all Y with distribution function G. It is well known that (D, ds)
constitutes a Polish space.? Let S : D — D be a map defined by

S(F) = LUX + (1 — U)X + c(U)),

where X, X, U are independent, £(X) = £(X) = F, and U is uniformly distributed on [0, 1].
Then one can show that S is a contraction with respect to the Wasserstein metric ds and,
thus, there is a unique fixed point ¥ € D with S(F) = F.

Indeed, let F,G € D and suppose that £L(X) = L(X) = F, L(Y) = L(Y) = G, and
U is uniformly distributed on [0,1] such that U, X, X and U,Y,Y are independent. Then
S(F)=LUX +(1 -U)X +¢(U)) and S(G) = LUY + (1 —U)Y +¢(U)) and consequently

3 (S(F),8(G) < UX+(1-U)X-UY —(1-U)Y|3
= IUX-V)+(1-U)X -Y)3
= E(X-Y)>.EU*+E(X -Y)* E(1-U)?

= %E(X -Y)2

Taking the infimum over all possible X, Y we obtain

H(S(E), () <2 (8 6),

which completes the proof that S is a contraction.
The final step is to show that Y;, actually converges to Y. We refer to [49] for details, but
it is sufficient to show that dao(L(Y3), L(Y)) — 0. In fact, Rosler [49] showed that

o) e < 23 (100 e e s o (252

n
which implies d2(L(Y},), £(Y)) — 0. This completes the proof that the normalized number
of comparisons (L, — ELy,)/n has a limiting distribution.

From the fixed point equation (2) it also possible to calculate all moments; e.g. the
variance of Y is given by
Vary =7 - 2a2.
3
Note that the existence of a limiting distribution (the Quicksort distribution) was first
observed by Régnier [45] via a martingale approach, whereas the characterization of Y with

2A sequence F,, converges to F in D if and only if F,, converges weakly to F and if the second moments
of F, converge to the second moment of F.



a fixed point equation is due to Rosler [49]. It is now also known that there exists a density
([55]), which is a bounded C*° function, tail estimates are available, and orders of convergence
are estimated (compare with [21, 22, 23, 32]). However, no explicit representations for the
limiting distribution are known.

In passing, we should add that the contraction method has developed into to a very
powerful tool in the analysis of (recursive algorithms), see [11, 15, 29, 37, 38, 36, 39, 40, 50].

Finally, we also mention that Dobrow and Fill [17] used a similar approach to analyze the
path length of the so-called recursive trees (this unfortunate term is due to Meir and Moon).
These are labelled non-plane trees whose labels increase away from the root. The number of
such trees is plainly (n — 1)! as can be seen from the fact that their exponential generating
function Y (z) satisfies

Y(2) =/ e’ O d.
0

Symbolically one can read this as: “A tree is a root of minimal label (the [) to which is
attached a set (the e¥) of similar trees.” Taking inspiration of Hennequin’s and Rosler’s
methods, Dobrow and Fill were able to show the existence of a limit distribution that has
interesting features not unlike the quicksort distribution. The structure of recursive trees is
also of interest as one of the early examples of a priority queue (i.e., a data structure based
on unbalanced heap-like trees).

3 The Height of Binary Search Trees

A binary search tree is a binary tree in which each node contains a key, where the keys are
drawn from some totally ordered set, say {1,2,...,n}. The first key is stored in the root.
The next key is placed either in the left child of the root if its value smaller than the key
stored in the root or otherwise in the right child. We repeat this procedure recursively until
all n keys are inserted into the tree. Observe that Quicksort can be viewed as building a
binary search tree. In fact parameter L,, discussed in the previous section is also equal to
the total path length in the associated binary search tree.

There are many interesting parameters of a binary search tree built over randomly selected
permutation of {1,2,...,n}. We mention here the depth of a key, the height (maximum
depth), the total path length, and others. The distribution of the height H,, of such a binary
search tree turns out to be an interesting (and difficult) problem. We briefly describe such
an analysis, but we start with some history.

In 1986 Devroye [12] proved that the expected value EH,, satisfies the asymptotic relation
EH, ~ clogn (as n — 00), where ¢ = 4.31107 ... is the (largest real) solution of the equation
clog (2—:) = 1. (Earlier Pittel [41] had shown that H,/logn — ~ almost surely as n — oo,
where v < ¢, compare also with Robson [46]. Later Devroye [13] provided a first bound
for the error term, he proved H,, — clogn = O(y/logn loglogn) in probability.) Based on
numerical data Robson conjectured that the variance VarH,, is bounded. In fact, he could
prove (see [47]) that there is an infinite subsequence for which

E|H, — EH,| = O(1),



and that his conjecture is equivalent to the assertion that the expected value of the number of
nodes at level k = H,, is bounded (see [48]). The best bounds were given using two completely
different methods by Devroye and Reed [16] and later by Drmota [18]. They (both) proved

EH,, = clogn + O(loglogn) (3)

and
VarH,, = E(H, — EH,)? = O((loglogn)?).

Eventually, Reed [44]3 settled Robson’s conjecture by showing that
VarH, = O(1) (n — 00).
His approach is related to that of [16], but he also showed that

EH, =clogn — loglogn + O(1). (4)

3c
2(c—1)
Reed’s approach is purely probabilistic. An analytic proof of Robson’s conjecture was given
(independently) by Drmota [19].4

The analytic proof of Drmota pays off since some time later he was able to extend his

analysis and obtain the limiting distribution for the height. In [20] he uses a sequence of
functions yy(z) defined as

yr(z) = Pr[H, < k|- 2"

n>0
Then yo(z) =1 and
mile) = 1+ [yt at. 5)

Obviously, yi(z) are polynomials of degree 2¥ — 1 and have a limit y(z) = 1/(1 — z) (for
0 <z < 1). The main result of [20] states

Pr[H, <k] =T (n/yx(1)) +o(1) (n — o0), (6)

where the o(1)-error term is uniform for all & > 0 and ¥(y), y > 0, is a monotonically
decreasing function with ¥(0) =1 and limy_,o, ¥(y) = 0 that satisfies the integral equation

y¥(y/el) = [Ty ) d, )
Furthermore, there exist constants C,7n > 0 such that
Pr(|H, —EH,|>y] < Ce™,  (y>0). (8)
Drmota’s method is based on a careful analysis of (5). In particular, if one sets

n(e) = [ W(ge e v ay, )

3Reed has also presented his result in Barcelona, 1999.
‘Drmota talked on this topic in Princeton, 1998, and in Krynica Morska, 2000.




then §;(0) =1 — o(1) and (7) translates to

Uk+1(7) = Gr11(0) + /Ow i (1) dt.

Thus, the functions gx(z) emulate the original functions yx(z). The idea is to approximate
yr(x) by gr(z) Observe that

g(z) = 3 <i /Oooy"ey\lf(yek/c) dy) -

!
oo\

= (v () row)

n>0

and then the resulting relation (6) is not unexpected any more.

4 Random LC Tries

The primary purpose of a trie [28, 33, 34, 52, 53]) is to store a set C of strings (words,
sequences), say C = {X! ..., X"}. Each string is a finite or infinite sequence of symbols
taken from a finite alphabet A = {wy,...,wy} of size V' = | A|. Strings are stored in leaves
of the trie. The trie over C is built recursively as follows: For |C| = 0, the trie is, of course,
empty. For |C| =1, trie(C) is a single node. If |C| > 1, C is split into V subsets C1,Co,...,Cy
so that a string is in C; if its first symbol is w;. The tries trie(Cy), trie(Cq), . .., trie(Cy) are
constructed in the same way except that at the kth step, the splitting of sets is based on the
kth symbol. These subtrees are then connected from their respective roots to a single node
to create trie(C). When a new string is inserted, the search starts at the root and proceeds
down the tree as directed by the input symbols.

There are many possible variations of the trie. One such variation is the b-trie, in which
a leaf is allowed to hold as many as b strings. The b-trie is particularly useful in algorithms
for extendible hashing in which the capacity of a page or other storage unit is b. A second
variation of the trie, the PATRICIA trie (Practical Algorithm To Retrieve Information Coded
In Alphanumeric) eliminates the waste of space caused by nodes having only one branch. This
is done by collapsing one-way branches into a single node.

Level Compression (LC) tries were introduced by Andersson and Nilsson [5]. They are
further compacted versions of tries or PATRICIA tries. The following operation is repeated
recursively: at the root of the trie (or PATRICIA trie) 7', find the highest complete subtree
C (of height h). Let T; (1 <4 < 2") denote the subtrees rooted at level h. Replace T by the
root of 7' and the 2" subtrees T}. Repeat the above path compression procedure recursively
for every T;. The resulting trie is called LC trie (or LC PATRICIA trie). Note that the
number of children of each node is a power of 2.

To analyze LC tries we assume throughout that data X!,..., X™ are drawn independently
and uniformly from [0, 1] (and the keys are just the binary expansions of X*). The quantities
of interest in a trie (or LC trie) are D,,, the depth of the n-th string, A,, the typical depth
defined as A,, = 2 7| D;, and Hy,, the height of the trie. Andersson and Nilsson [5] showed
that for such probabilistic model (i.e., unbiased memoryless source) the typical depth in LC



tries is A,, = O(log" n), where log* n is the log-star function, defined as the minimum positive
integer ¢ such that i-th iterate log, log, - - - log, n < 1.

Devroye [14] substantially improved results of Andersson and Nilsson. He showed that
for LC tries and LC PATRICIA tries we have (under the uniform model), as n — oo,

EA, ~ED, ~log*n.

Furthermore, he showed that

in probability,

logy n
in probability for the height of LC tries, and

H, R
v2logon

in probability for the height of LC PATRICIA tries.

The proof is based on the property that in a random (PATRICIA) trie the fill-up-level (the
number of consecutive full levels starting at the root) is about log, n—logs log, n in probability
(cf. [53]). Thus, all these levels are compressed into one node in the corresponding LC trie.
The remaining subtrees are now of size about log, n. Hence, the fill-up-level of these subtrees
is about log, log, n — log, log,log, n and so on. This heuristics shows that the number of
levels in the LC trie is approximately log* n.

These considerations also show that random tries in the uniform model constitute very
well balanced binary trees, even if we look at the typical structure after the fill-up-level. The
only puzzling thing is that the height of LC-tries is relatively large. For random tries the
height is about 2logy n and for random LC tries about logs n. For random PATRICIA tries
the height is about logy n + v/21ogy n and for random LC PATRICIA tries about /2log, n.
This means that the LC-construction for tries only compresses the first logs n levels to log* n
new levels whereas the remaining levels are not really effected by this procedure. There are
relatively few nodes at these higher levels because the average depth is not affected but the
height is.

5 Lopsided Trees

In this section, we briefly describe a remarkable contribution of Choi and Golin [9] on lopsided
trees. Lopsided trees are ordered rooted r-ary trees in which the length of the edge from a
parent to its i-th child is ¢; (where ¢; < ¢g < .-+ < ¢;). These kinds of trees model prefix
codes, where different letters may have different costs. The total cost of such prefix codes
corresponds to the external path length of the corresponding lopsided tree. Especially, one is
interested in Varn codes. Varn codes for n symbols are the minimal prefix codes. Equivalently,
a Varn code of n words corresponds to a lopsided tree with n external nodes and minimal
external path length.



The main contribution of this paper is the classification of the optimal structure and
analysis of such trees 7,, with n external nodes. We first describe the optimal construction:
One starts by labeling the nodes of an infinite lopsided tree in order of increasing depths.
Now, for any set V' of nodes we denote by LEAF (V') the set of nodes that are not in V' but
their immediate ancestor is in V. Furthermore, for n < |LEAF (V)| let LEAF, (V) be the n
smallest labeled nodes in LEAF(V') and set

T™ ={1,2,...,m} ULEAF,({1,2,...,m}),

where [(n—1)/(r—1)] <m < n—1. Next, let ly,[1,l,... denote the consecutive levels upon
which nodes appear, i.e. l[p = 0 and /; = min{depth(v) : depth(v) > l;_1}, and let m; be the
number of nodes v with depth(v) < l;. Finally, set z,,, = (32i%; ¢;) /(m—1) (forr =2,...,7)
and let k > 2 be defined by

Ty 2Ty 2 2 Tg—1 2T < T <7+ < Ty
With help of this notation we set
Aj ={v € LEAF (Vi;) : depth(v) < lj + zy},

aj = |AJ|7
Bj = AjU{v € LEAF(Vy;) : lj + zp < depth(v) < ljp1 + 2}
and b; = |Bj|.
The classification of optimal lopsided trees of size n is as follows:

1. If n = a; for some j > 0 then Tg?j = Vin; U Aj is an optimal lopsided tree.
2. If aj < n < b; for some j > 0 then T,?j and Tbmj = Vin; U Bj are optimal lopsided trees.
'j J

3. If bj < n < aj; for some j > 0 then TP is optimal if n = bj + p(k — 1) and Tt
orT,Tjer+1 is optimal if n = b; +p(k — 1) + ¢ for ¢ < k — L.

This characterization can be also applied to formulate an algorithm to construct an op-
timal tree T}, in O(nlogr) time which is better than previous algorithms.

After building the optimal trees, the authors of [9] analyze lopsided trees. In particular,
they present asymptotic analysis of F'(z) (the number of nodes in A, = {v : depth(v) < z}),
L(z) (the number of leaves in A, = {v : depth(v) < z}), and the minimum height of a tree
with n leaves and the cost C(T3,) (resp. the cost of Varn codes of n words).

Let us describe the analysis of F'(x), that is, the number of nodes of depth no bigger than
x. It is easy to see that F'(x) satisfies the following equation

1+ Flzx—c1)+-+F(x—c¢) if 2>
Fz)=< 1 if 0<z<¢
0 if z<0.

This functional equation can be solved either by using Laplace’s transform or the Mellin
transform. The authors of [9] set z = Int and d; = In¢; to reduce the above equation to the



one on f(t) = F(Int) for ¢ > 1 that is accessible by the Mellin transform approach. Indeed,
the Mellin transform f*(s) = [° f(t)t*~'dt becomes

o 1
A r—ry

for R(s) < —1. Using the inverse Mellin transform, one can extract the asymptotics of F'(x)
as ¢ — oo. In particular, it is proved in [9] that

e if (¢1,...,c¢;) are rationally related (i.e., for all 1 < i,j < r the ratio ¢;/c; is rational),
then
F(z) = D(z)¢" + 0(p*), & — o0

where 1/ is the smallest positive solution of 1 — 2z — ... — 2 =0 and p < ¢, and
d —dy, —d{z/d}
D(z) = S(1- ™)

with d = ged(cy,...,¢r), c =Y j—1cip~ % and {a} = a — |a] is the fractional part of a.

e if (ci,...,¢,) are irrationally related (i.e., for some 1 < i,j < r the ratio ¢;/c; is
irrational), then

F(x) " +o(¢")

~clnyp
as & — 00.

6 Dynamical Sources and Algorithms

It is a quite natural idea to consider an algorithm together with its possible inputs as a
dynamical system. The (discrete) time is related to the number of iterations. In what
follows we shortly review on the realization of this idea by B. Vallée and her collaborators
1, 7, 8, 10, 56, 58, 57].

One considers a dynamical systems (or sources S) on a finite or denumerable alphabet
M. Let T : (0,1) — (0,1) be a mapping of the kind that there is a partition (I, : m € M)
of (0,1) such that the restriction of T": I, — (0, 1) is a bijection (satisfying certain analytic
properties). Then each z € (0, 1) is associated with an infinite sequence (word)

M(z) = (My(x), Ma(x), . ..),

where M;(z) =m € M if TV (z) € I,,. Furthermore there is a probability distribution on
(0,1) so that one can consider statistical properties of such dynamical systems.

The key element of the whole analysis is a function A(s) (where s in a suitable complex
neighborhood of the real interval I = [0, 1]) which is the largest eigenvalue of an appropriate
bounded compact operator such that an analog of the Perron-Frobenius theory can be applied.
These operators are called classical G5 (rvesp. generalized) Ruelle operators. For s = 1 the
classical Ruelle operator G; is just the density transform operator on (0,1) with respect to
the mapping T': (0,1) — (0,1) (see [57]).



Two parameters are of particular interest, namely the entropy h(S) and the coincidence
probability (related to the second order Rényi entropy) ¢(S). They are are related to A(s)
via h(S) = —A'(1) and ¢(S) = A(2). For example, one asserts that the number B(z) of finite
prefixes of M (z) with probability > z is asymptotically given by

-1 1 1
B(a)~——— =

N(1) z  h(S)z

as r — oo (see [57]).

One can apply dynamic sources and this new methodology to the analysis of tries. In
such a case, it is assumed that M (x) determines the infinite strings of the data keys (see
[10]). One obtains that the height H,, of these random tries satisfies

EH, ~ logn

2
| log ¢(S))|
and
Pr{H, < k] =exp (—pc(S)"n?) +o(1)

uniformly for all integers k > 0 as n — oo (where p > 0 is a constant depending on the source
and the initial density f). Furthermore, the average size of such a trie is approximately n/h(S)
and the average path length (the sum of all depth of leaves) is approximately nlogn/h(S).

Another application of this concept is the analysis of generalized pattern matchings (“hid-
den patterns”, see [7, 24]) where the words are generated according to a dynamical source.
The authors of [7] determine the mean and the variance of the number of occurrences in this
generalized pattern matching problem, and establish a property of concentration of distri-
butions. The motivation to study this problem comes from an attempt at finding a reliable
threshold for intrusion detections, from textual data processing applications, and from molec-
ular biology.

Finally, Vallée and her collaborators applied dynamic sources to various versions of the
Euclidean algorithm (e.g. the binary Euclidean algorithm [56], the Lehmer-Euclid algorithm,
the a-Euclidean algorithm [8]). Again the entropy h(S) governs the analysis of these algo-
rithms. For example, one obtains that the average number of iterations F,, in the Euclidean
algorithm is given by

2
P, ~——1

and the average bit complexity C,, becomes

P 2
~ ]_
Chn 7(S) og°n

as n — 00, where the constant p is related to the mean value of the digits.
7 The Random Assignment Problem

In this section, we report on the solution of a long standing conjecture concerning the average
value of the random assignment problem due to David Aldous.’> In the linear assignment

% Aldous outlined his proof in his talk in Krynica Morska, 2002, on “Zeta(2) and the random assignment
problem”.

10



problem (LAP) a matrix {a;;};';_; is given and one asks for the best permutation o such that

n
Ap = min Z Wi o (i)
ag 1
1=

In the random assignment problem the elements a;; are uniformly distributed in [0,1]. The
long standing open problem was to evaluate the average value EA,,.

There is another model of the LAP problem. In this representation, a complete bipartite
graph K, , is given with random weights on edges that obey an exponential law of parameter
1. Let A, be the cost of a random assignment which is the same as the cost of LAP. It has

long been conjectured that
oo
1
B, 02 =Y (10)

There is indeed a finite version of the conjecture, namely,
EA, =) 7 (11)

In fact, this problem has been open for some 20 years: Karp [30] proved in 1983 that EA,, < 2;
Aldous [2] (1992) proved the existence of the limit & = limEA,, and Goemans and Kodialam
[27] (1993) established that EA, is a little over 1 + e~!. Mezard and Parisi [35] have a
non rigorous argument based on ideas from statistical mechanics that EA,, — 72/6. Aldous
developed the ideas of an approach to proving the infinite n conjecture-this by viewing it as
an infinite matching problem. This gives already the improved upper bound EA,, < {(2) and
there was good hope that the infinite n conjecture will succumb. Indeed, it did. After our
seminar Aldous submitted a complete proof and it was recently published in [4].

There are several interesting points in Aldous’ lecture commented by Philippe Flajolet in
his post-conference Research Notes.® First, the general approach of the probabilistic meth-
ods consists in designing an infinite (continuous) model in which the finite scale models are
immersed; see Aldous’ continuum random tree [3]. This is dual to analytic-combinatorial
methods that aim at an exact modeling by generating function complemented by subsequent
asymptotic analysis: “First approximate, then analyze!” versus “First analyze then approx-
imate!” Second, Aldous spent quite some time during his talk advocating “pure thought”
proofs: this is the way he envisions the probabilistic approach. This made Flajolet wonders,
however, as to the amount of technology that is needed. Flajolet’s impression was that ev-
erything is in the eye of the beholder, and perhaps what is “pure thought” for some is hard
work for others? Conversely, perhaps, analysts should devote more time structuring proofs
by taking the “pure thought”motto as an inspiration?

A last fact regarding this motivating lecture. One may consider the analogous problem
of the cost of a minimal spanning tree of K,, with edge weights that are uniform (0,1). Frieze
[26] showed in 1985 that the expected cost tends to ((3) as n — oco. Is there a finite n version
of Frieze’s result?

5They were published in August 2000 on the AofA web page
http://pauillac.inria.fr/algo/AofA/Research/index.html.
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8 Coalescing Saddle Points

We finally comment on an analytic method that has appeared in several applications, namely

on coalescing saddle points and the Airy function.”

For many years, there had been good
reason to suspect that Airy functions play a role in quantifying certain transition regions of
random combinatorics. The Airy function can be defined either as a solution of the differential

equation 4" — zy = 0 or by the integral representation

) 1 [*o° 3 n—l—l )/3) . (2(n+1)n n
— izt +t%/3) 1/3
Ai(z) = 5 /_ dt = 32/3 E s1n< 3 ) (3 z) . (12)

It is thus the prototype of integrals involving the exponential of a cubic.
Many limit distributions of analytic combinatorics are known to be attainable through
perturbation of a singularity analysis or a saddle point analysis. The approximations are of an

_‘”2, which usually leads to Gaussian laws. However, when there

exponential quadratic form, e
is some confluence of singularities or some “coalescence” of saddle points, approximations of
a more complicated form should be sought. Precisely, coalescence of two saddle points is
known in applied mathematics to lead to expressions involving the Airy function.

We first observe that some complications may arise with straightforward saddle point

method. For example, imagine that the integral I(n, ) defined

I(n,a) :/f(z)e_nh(z’o‘)dz

depends on the parameter a such that for a # g there are two distinct saddle points 2z
and z_ of multiplicity one. For o« = ay these two points coincide to a single saddle point z
of multiplicity two. Therefore, (under appropriate assumptions) for a #

2T 1/2
nh”(Z+)}

For a = g the asymptotic behavior of I(n,ap) differs radically since h”(zp) = 0. Then one

2771_)] 1/2

I(n,a) ~ f(Z+)e—nh(z+) [ nh" (z_

+ flamemie) |

arrives at
1/3

I(n, ag) ~ Af (zg)e M=) (ﬁ) [ 3!

3/ Lnh"(z4)

where A is a constant that depend son the contour of the integration. Thus the order of n

changes discontinuously from 1 to 3. The interested reader is refereed to Wong [59] and [6]
for more in depth discussion.

Flajolet’s talk in Krynica Morska focuses on the case of random maps. Recall that a
map is a connected planar graph given together with a rigid embedding on the plane or the
Riemann sphere. Consider now the core which is the largest 2-connected component of a map
(this is in essence the largest submap obtained by breaking the original map at its articulation
points). Then core size admits a limiting distribution that has several surprising features: the

"Philippe Flajolet talked in Krynica Morska, 2000, about “Random Maps and Airy Phenomena”, based
on joint work with Cyril Banderier, Michele Soria, and Gilles Schaeffer [6] published in the post-conference
special issue of Random Structures € Algorithms. His talk was followed by talks of Michele Soria and Gilles
Schaeffer on related subjects.
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tails are highly dissymmetric, decaying like 275/2 on the left and like e=*" on the right. The
authors of [6] propose to call this distribution the map-Airy distribution: it arises precisely
from a confluence of two saddle points (as seen via Lagrange inversion) or, equivalently, from
a certain type of confluence of singularities (in the realm of the original generating functions)
and it involves the Airy function—whence the name given to the distribution. Indeed, the
map-Airy distribution is found to have density

A(z) = 2exp (—§x3> (wAi(e?) — Al(2?)). (13)

and is, in disguise, a stable law of index %

The next talk in Krynica Morska by Soria put these results into the more general frame-
work of composition of singularity schemes. The final talk in this series by Schaeffer made
explicit the generality of the approach. In fact a dozen or so types of maps exhibit the dis-
tribution (13)) and this has implication in the fast random generation of maps with higher
connectivity indices. Finally, readers of these pages have already heard about the Airy func-
tion, e.g., in the context of linear probing hashing [54]. As a matter of fact, there is good
hope to attack the evolution of the random graph G, ,,, (n vertices and m edges) and of linear
probing hashed tables by means of coalescing saddle points [25].
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