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Abstra
t

This arti
le is a 
ontinuation of our previous Algorithmi
 Column [54℄ (EATCS, 77,

2002) dedi
ated to a
tivities of the Analysis of Algorithms group during the \Dagstuhl{

Period" (1993{1997). The �rst three meetings took pla
e in S
hloss Dagstuhl, Germany.

The next three meetings of AofA were in Prin
eton (1998), Bar
elona (1999), and Kryni
a

Morska (near Gda�nsk, 2000). We shall present here some resear
h problems that have

been the highlights of these three meetings. Three spe
ial issues [42, 31, 43℄ were also

published after these meetings and we brie
y summarize them.

1 Introdu
tion

The area of analysis of algorithms was born on July 27, 1963, when D. E. Knuth wrote his

\Notes on Open Addressing" about hashing tables with linear probing. Sin
e then the area

has been undergoing substantial 
hanges; we now use various methods from di�erent bran
hes

of mathemati
s: 
ombinatori
s, probability theory, graph theory, real and 
omplex analysis,

number theory and o

asionally algebra, geometry, operations resear
h, and so forth.

In 1993 the �rst meeting entirely devoted to the analysis of algorithms was organized by

P. Flajolet, R. Kemp and H. Prodinger at S
hloss Dagstuhl (Germany). After that there

have been two further meetings in Dagstuhl (1995, 1997). Some of the resear
h a
tivities of

that time have been des
ribed in the �rst Algorithmi
 Column [54℄.

The emergen
e of AofA as an organized �eld of resear
h, whi
h began with the Dagstuhl

seminars and 
ontinues till nowadays, started a transformation from a 
olle
tion of results

on individual problems to a study of methods of general appli
ability, to an understanding

of relationships to 
lassi
al methods of analysis, 
ombinatori
s, and dis
rete probability, to a

web of knowledge that applies in a broad 
ontext.

In this se
ond Algorithmi
s Column on analysis of algorithms we 
on
entrate on a
tivi-

ties of the next tree meetings: Prin
eton (1998), Bar
elona (1999) and Kryni
a Morska (near

Gda�nsk, 2000). Most of the material we outline here is published in three spe
ial issues: Al-

gorithmi
a, 29, 2001, [42℄, Algorithmi
a, 31, 2001 [31℄, and Random Stru
tures & Algorithms,

19, 2001, [43℄ (dedi
ated to Don Knuth on the o

asion of his (100)

8

th birthday).

�
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2 The Contra
tion Method for Re
ursive Algorithms

Re
ursive algorithms are popular tools in 
omputer s
ien
e. Qui
ksort is one of the most

prominent one. Re
ursive stru
tures are often subje
t of pre
ise mathemati
al analysis sin
e

usually a parameter of interest 
an be translated into re
urren
es (e.g. the number of 
om-

parisons in Qui
ksort). Assuming that a properly normalized version of su
h a parameter

has a limiting distribution (under a probabilisti
 model), the above re
urren
e may further

translate into a �xed point equation for the distribution. The main thrust of the 
ontra
tion

method introdu
ed by R�osler and R�us
hendorf [51℄ is to solve su
h a �xed point equation

using Bana
h's �xed point equation.

In what follows we des
ribe the 
ontra
tion method when applied to the number of 
om-

parisons L

n

of Qui
ksort sorting n items. The re
ursive des
ription of Qui
ksort translates

to

1

L(L

n

) = L

�

L

Z

n

�1

+ L

n�Z

n

+ n� 1

�

; n � 2; (1)

where L

0

= L

1

= 0, L

2

= 1, Z

n

is uniformly distributed on f1; 2; : : : ; ng, L(L

j

) = L(L

j

), and

Z

n

, L

j

, L

j

(1 � j � n) are independent. For example, it is an easy exer
ise to obtain expli
it

representations for the expe
ted value EL

n

. From (1) we �nd the re
urren
e

EL

n

= n� 1 +

1

n

n

X

j=1

(EL

j�1

+EL

n�j

)

that 
an be expli
itly solved yielding

EL

n

= 2(n+ 1)

n+1

X

k=1

1

k

� 4(n+ 1) + 2

= 2n log n+ n(2
 � 4) + 2 log n+ 2
 + 1 +O(log n)=n)

with 
 = 0:57721::: being Euler's 
onstant.

Let us now 
onsider the random variable Y

n

= (L

n

�EL

n

)=n that satis�es the following

equation

L(Y

n

) = L

�

Y

Z

n

�1

Z

n

� 1

n

+ Y

n�Z

n

n� Z

n

n

+ 


n

(Z

n

)

�

; n � 2;

where Y

0

= Y

1

= 0, Z

n

is uniformly distributed on f1; 2; : : : ; ng, and L(Y

j

) = L(Y

j

), and Z

n

,

Y

j

, Y

j

(1 � j � n) are independent. Furthermore,




n

(j) =

n� 1

n

+

1

n

(EL

j�1

+EL

n�j

�EL

n

) :

Thus if Y

n

has a limiting distribution Y , then it has to satisfy

L(Y ) = L

�

UY + (1� U)Y + 
(U)

�

; (2)

where U is uniformly distributed on [0; 1℄, L(Y ) = L(Y ), U; Y ; Y are independent, and


(x) = 2x log x+ 2(1� x) log(1� x) + 1:

1

We denote by L(X) the distribution fun
tion of X.
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The �rst step is to show that (2) has a
tually a unique solution with EY = 0.

Let D denote the spa
e of distribution fun
tions with �nite se
ond moment and zero �rst

moment. Then the Wasserstein metri
 d

2

is de�ned as

d

2

(F;G) = inf kX � Y k

2

;

where k � k

2

denotes the L

2

-norm and the in�mum is taken over all random variables X with

distributions fun
tion F and all Y with distribution fun
tion G. It is well known that (D; d

2

)


onstitutes a Polish spa
e.

2

Let S : D ! D be a map de�ned by

S(F ) := L(UX + (1� U)X + 
(U));

where X;X;U are independent, L(X) = L(X) = F , and U is uniformly distributed on [0; 1℄.

Then one 
an show that S is a 
ontra
tion with respe
t to the Wasserstein metri
 d

2

and,

thus, there is a unique �xed point F 2 D with S(F ) = F .

Indeed, let F;G 2 D and suppose that L(X) = L(X) = F , L(Y ) = L(Y ) = G, and

U is uniformly distributed on [0; 1℄ su
h that U;X;X and U; Y ; Y are independent. Then

S(F ) = L(UX + (1�U)X + 
(U)) and S(G) = L(UY + (1�U)Y + 
(U)) and 
onsequently

d

2

2

(S(F ); S(G)) � kUX + (1� U)X � UY � (1� U)Y k

2

2

= kU(X � Y ) + (1� U)(X � Y )k

2

2

= E(X � Y )

2

�EU

2

+E(X � Y )

2

� E(1� U)

2

=

2

3

E(X � Y )

2

:

Taking the in�mum over all possible X;Y we obtain

d

2

(S(F ); S(G)) �

r

2

3

d

2

(F;G);

whi
h 
ompletes the proof that S is a 
ontra
tion.

The �nal step is to show that Y

n

a
tually 
onverges to Y . We refer to [49℄ for details, but

it is suÆ
ient to show that d

2

(L(Y

n

);L(Y ))! 0. In fa
t, R�osler [49℄ showed that

d

2

2

(L(Y

n

);L(Y )) �

2

n

n

X

j=1

�

j � 1

n

�

2

d

2

2

(L(Y

j�1

);L(Y )) +O

 

log

2

n

n

!

whi
h implies d

2

(L(Y

n

);L(Y )) ! 0. This 
ompletes the proof that the normalized number

of 
omparisons (L

n

�EL

n

)=n has a limiting distribution.

From the �xed point equation (2) it also possible to 
al
ulate all moments; e.g. the

varian
e of Y is given by

VarY = 7�

2

3

�

2

:

Note that the existen
e of a limiting distribution (the Qui
ksort distribution) was �rst

observed by R�egnier [45℄ via a martingale approa
h, whereas the 
hara
terization of Y with

2

A sequen
e F

n


onverges to F in D if and only if F

n


onverges weakly to F and if the se
ond moments

of F

n


onverge to the se
ond moment of F .
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a �xed point equation is due to R�osler [49℄. It is now also known that there exists a density

([55℄), whi
h is a bounded C

1

fun
tion, tail estimates are available, and orders of 
onvergen
e

are estimated (
ompare with [21, 22, 23, 32℄). However, no expli
it representations for the

limiting distribution are known.

In passing, we should add that the 
ontra
tion method has developed into to a very

powerful tool in the analysis of (re
ursive algorithms), see [11, 15, 29, 37, 38, 36, 39, 40, 50℄.

Finally, we also mention that Dobrow and Fill [17℄ used a similar approa
h to analyze the

path length of the so-
alled re
ursive trees (this unfortunate term is due to Meir and Moon).

These are labelled non-plane trees whose labels in
rease away from the root. The number of

su
h trees is plainly (n � 1)! as 
an be seen from the fa
t that their exponential generating

fun
tion Y (x) satis�es

Y (z) =

Z

z

0

e

Y (t)

dt:

Symboli
ally one 
an read this as: \A tree is a root of minimal label (the

R

) to whi
h is

atta
hed a set (the e

Y

) of similar trees." Taking inspiration of Hennequin's and R�osler's

methods, Dobrow and Fill were able to show the existen
e of a limit distribution that has

interesting features not unlike the qui
ksort distribution. The stru
ture of re
ursive trees is

also of interest as one of the early examples of a priority queue (i.e., a data stru
ture based

on unbalan
ed heap-like trees).

3 The Height of Binary Sear
h Trees

A binary sear
h tree is a binary tree in whi
h ea
h node 
ontains a key, where the keys are

drawn from some totally ordered set, say f1; 2; : : : ; ng. The �rst key is stored in the root.

The next key is pla
ed either in the left 
hild of the root if its value smaller than the key

stored in the root or otherwise in the right 
hild. We repeat this pro
edure re
ursively until

all n keys are inserted into the tree. Observe that Qui
ksort 
an be viewed as building a

binary sear
h tree. In fa
t parameter L

n

dis
ussed in the previous se
tion is also equal to

the total path length in the asso
iated binary sear
h tree.

There are many interesting parameters of a binary sear
h tree built over randomly sele
ted

permutation of f1; 2; : : : ; ng. We mention here the depth of a key, the height (maximum

depth), the total path length, and others. The distribution of the height H

n

of su
h a binary

sear
h tree turns out to be an interesting (and diÆ
ult) problem. We brie
y des
ribe su
h

an analysis, but we start with some history.

In 1986 Devroye [12℄ proved that the expe
ted value EH

n

satis�es the asymptoti
 relation

EH

n

� 
 log n (as n!1), where 
 = 4:31107 : : : is the (largest real) solution of the equation


 log

�

2e




�

= 1: (Earlier Pittel [41℄ had shown that H

n

= log n ! 
 almost surely as n ! 1,

where 
 � 
, 
ompare also with Robson [46℄. Later Devroye [13℄ provided a �rst bound

for the error term, he proved H

n

� 
 log n = O(

p

logn log logn) in probability.) Based on

numeri
al data Robson 
onje
tured that the varian
e VarH

n

is bounded. In fa
t, he 
ould

prove (see [47℄) that there is an in�nite subsequen
e for whi
h

EjH

n

�EH

n

j = O(1);
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and that his 
onje
ture is equivalent to the assertion that the expe
ted value of the number of

nodes at level k = H

n

is bounded (see [48℄). The best bounds were given using two 
ompletely

di�erent methods by Devroye and Reed [16℄ and later by Drmota [18℄. They (both) proved

EH

n

= 
 log n+O(log logn) (3)

and

VarH

n

= E(H

n

�EH

n

)

2

= O((log log n)

2

):

Eventually, Reed [44℄

3

settled Robson's 
onje
ture by showing that

VarH

n

= O(1) (n!1):

His approa
h is related to that of [16℄, but he also showed that

EH

n

= 
 log n�

3


2(
 � 1)

log log n+O(1): (4)

Reed's approa
h is purely probabilisti
. An analyti
 proof of Robson's 
onje
ture was given

(independently) by Drmota [19℄.

4

The analyti
 proof of Drmota pays o� sin
e some time later he was able to extend his

analysis and obtain the limiting distribution for the height. In [20℄ he uses a sequen
e of

fun
tions y

k

(x) de�ned as

y

k

(x) =

X

n�0

Pr[H

h

� k℄ � x

n

:

Then y

0

(x) � 1 and

y

k+1

(x) = 1 +

Z

x

0

y

k

(t)

2

dt: (5)

Obviously, y

k

(x) are polynomials of degree 2

k

� 1 and have a limit y(x) = 1=(1 � x) (for

0 � x < 1). The main result of [20℄ states

Pr[H

n

� k℄ = 	(n=y

k

(1)) + o(1) (n!1); (6)

where the o(1)-error term is uniform for all k � 0 and 	(y), y � 0, is a monotoni
ally

de
reasing fun
tion with 	(0) = 1 and lim

y!1

	(y) = 0 that satis�es the integral equation

y	(y=e

1=


) =

Z

y

0

	(z)	(y � z) dz: (7)

Furthermore, there exist 
onstants C; � > 0 su
h that

Pr[jH

n

�EH

n

j � y℄ � Ce

��y

; (y > 0): (8)

Drmota's method is based on a 
areful analysis of (5). In parti
ular, if one sets

~y

k

(x) :=

Z

1

0

	(ye

�k=


)e

�y(1�x)

dy; (9)

3

Reed has also presented his result in Bar
elona, 1999.

4

Drmota talked on this topi
 in Prin
eton, 1998, and in Kryni
a Morska, 2000.
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then ~y

k

(0) = 1� o(1) and (7) translates to

~y

k+1

(x) = ~y

k+1

(0) +

Z

x

0

~y

k

(t)

2

dt:

Thus, the fun
tions ~y

k

(x) emulate the original fun
tions y

k

(x). The idea is to approximate

y

k

(x) by ~y

k

(x) Observe that

~y

k

(x) =

X

n�0

�

1

n!

Z

1

0

y

n

e

�y

	(ye

�k=


) dy

�

x

n

:

=

X

n�0

�

	

�

n

~y

k

(1)

�

+ o(1)

�

x

n

and then the resulting relation (6) is not unexpe
ted any more.

4 Random LC Tries

The primary purpose of a trie [28, 33, 34, 52, 53℄) is to store a set C of strings (words,

sequen
es), say C = fX

1

; : : : ;X

n

g. Ea
h string is a �nite or in�nite sequen
e of symbols

taken from a �nite alphabet A = f!

1

; : : : ; !

V

g of size V = jAj. Strings are stored in leaves

of the trie. The trie over C is built re
ursively as follows: For jCj = 0, the trie is, of 
ourse,

empty. For jCj = 1, trie(C) is a single node. If jCj > 1, C is split into V subsets C

1

; C

2

; : : : ; C

V

so that a string is in C

j

if its �rst symbol is !

j

. The tries trie(C

1

); trie(C

2

); : : : ; trie(C

V

) are


onstru
ted in the same way ex
ept that at the kth step, the splitting of sets is based on the

kth symbol. These subtrees are then 
onne
ted from their respe
tive roots to a single node

to 
reate trie(C). When a new string is inserted, the sear
h starts at the root and pro
eeds

down the tree as dire
ted by the input symbols.

There are many possible variations of the trie. One su
h variation is the b-trie, in whi
h

a leaf is allowed to hold as many as b strings. The b-trie is parti
ularly useful in algorithms

for extendible hashing in whi
h the 
apa
ity of a page or other storage unit is b. A se
ond

variation of the trie, the PATRICIA trie (Pra
ti
al Algorithm To Retrieve Information Coded

In Alphanumeri
) eliminates the waste of spa
e 
aused by nodes having only one bran
h. This

is done by 
ollapsing one-way bran
hes into a single node.

Level Compression (LC) tries were introdu
ed by Andersson and Nilsson [5℄. They are

further 
ompa
ted versions of tries or PATRICIA tries. The following operation is repeated

re
ursively: at the root of the trie (or PATRICIA trie) T , �nd the highest 
omplete subtree

C (of height h). Let T

i

(1 � i � 2

h

) denote the subtrees rooted at level h. Repla
e T by the

root of T and the 2

h

subtrees T

i

. Repeat the above path 
ompression pro
edure re
ursively

for every T

i

. The resulting trie is 
alled LC trie (or LC PATRICIA trie). Note that the

number of 
hildren of ea
h node is a power of 2.

To analyze LC tries we assume throughout that data X

1

; : : : ;X

n

are drawn independently

and uniformly from [0; 1℄ (and the keys are just the binary expansions of X

i

). The quantities

of interest in a trie (or LC trie) are D

n

, the depth of the n-th string, A

n

, the typi
al depth

de�ned as A

n

=

1

n

P

n

i=1

D

i

, and H

n

, the height of the trie. Andersson and Nilsson [5℄ showed

that for su
h probabilisti
 model (i.e., unbiased memoryless sour
e) the typi
al depth in LC

6



tries is A

n

= �(log

�

n), where log

�

n is the log-star fun
tion, de�ned as the minimum positive

integer i su
h that i-th iterate log

2

log

2

� � � log

2

n � 1.

Devroye [14℄ substantially improved results of Andersson and Nilsson. He showed that

for LC tries and LC PATRICIA tries we have (under the uniform model), as n!1,

EA

n

� ED

n

� log

�

n:

Furthermore, he showed that

D

n

log

�

n

! 1

in probability,

H

n

log

2

n

! 1

in probability for the height of LC tries, and

H

n

p

2 log

2

n

! 1

in probability for the height of LC PATRICIA tries.

The proof is based on the property that in a random (PATRICIA) trie the �ll-up-level (the

number of 
onse
utive full levels starting at the root) is about log

2

n�log

2

log

2

n in probability

(
f. [53℄). Thus, all these levels are 
ompressed into one node in the 
orresponding LC trie.

The remaining subtrees are now of size about log

2

n. Hen
e, the �ll-up-level of these subtrees

is about log

2

log

2

n � log

2

log

2

log

2

n and so on. This heuristi
s shows that the number of

levels in the LC trie is approximately log

�

n.

These 
onsiderations also show that random tries in the uniform model 
onstitute very

well balan
ed binary trees, even if we look at the typi
al stru
ture after the �ll-up-level. The

only puzzling thing is that the height of LC-tries is relatively large. For random tries the

height is about 2 log

2

n and for random LC tries about log

2

n. For random PATRICIA tries

the height is about log

2

n+

p

2 log

2

n and for random LC PATRICIA tries about

p

2 log

2

n.

This means that the LC-
onstru
tion for tries only 
ompresses the �rst log

2

n levels to log

�

n

new levels whereas the remaining levels are not really e�e
ted by this pro
edure. There are

relatively few nodes at these higher levels be
ause the average depth is not a�e
ted but the

height is.

5 Lopsided Trees

In this se
tion, we brie
y des
ribe a remarkable 
ontribution of Choi and Golin [9℄ on lopsided

trees. Lopsided trees are ordered rooted r-ary trees in whi
h the length of the edge from a

parent to its i-th 
hild is 


i

(where 


1

� 


2

� � � � � 


r

). These kinds of trees model pre�x


odes, where di�erent letters may have di�erent 
osts. The total 
ost of su
h pre�x 
odes


orresponds to the external path length of the 
orresponding lopsided tree. Espe
ially, one is

interested in Varn 
odes. Varn 
odes for n symbols are the minimal pre�x 
odes. Equivalently,

a Varn 
ode of n words 
orresponds to a lopsided tree with n external nodes and minimal

external path length.
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The main 
ontribution of this paper is the 
lassi�
ation of the optimal stru
ture and

analysis of su
h trees T

n

with n external nodes. We �rst des
ribe the optimal 
onstru
tion:

One starts by labeling the nodes of an in�nite lopsided tree in order of in
reasing depths.

Now, for any set V of nodes we denote by LEAF (V ) the set of nodes that are not in V but

their immediate an
estor is in V . Furthermore, for n � jLEAF (V )j let LEAF

n

(V ) be the n

smallest labeled nodes in LEAF (V ) and set

T

m

n

= f1; 2; : : : ;mg [ LEAF

n

(f1; 2; : : : ;mg);

where d(n�1)=(r�1)e �m � n�1. Next, let l

0

; l

1

; l

2

; : : : denote the 
onse
utive levels upon

whi
h nodes appear, i.e. l

0

= 0 and l

i

= minfdepth(v) : depth(v) > l

i�1

g, and let m

j

be the

number of nodes v with depth(v) � l

j

. Finally, set x

m

= (

P

m

i=1




i

) =(m� 1) (for r = 2; : : : ; r)

and let k � 2 be de�ned by

x

2

� x

3

� � � � � x

k�1

� x

k

< x

k+1

< � � � < x

r

:

With help of this notation we set

A

j

= fv 2 LEAF (V

m

j

) : depth(v) � l

j

+ x

k

g;

a

j

= jA

j

j,

B

j

= A

j

[ fv 2 LEAF (V

m

j

) : l

j

+ x

k

< depth(v) � l

j+1

+ x

k

g

and b

j

= jB

j

j.

The 
lassi�
ation of optimal lopsided trees of size n is as follows:

1. If n = a

j

for some j � 0 then T

m

j

a

j

= V

m

j

[A

j

is an optimal lopsided tree.

2. If a

j

< n � b

j

for some j � 0 then T

b

j

n

and T

m

j

b

j

= V

m

j

[B

j

are optimal lopsided trees.

3. If b

j

< n � a

j+1

for some j � 0 then T

m

j

+p

n

is optimal if n = b

j

+ p(k � 1) and T

m

j

+p

n

or T

m

j

+p+1

n

is optimal if n = b

j

+ p(k � 1) + q for q < k � 1.

This 
hara
terization 
an be also applied to formulate an algorithm to 
onstru
t an op-

timal tree T

n

in O(n log r) time whi
h is better than previous algorithms.

After building the optimal trees, the authors of [9℄ analyze lopsided trees. In parti
ular,

they present asymptoti
 analysis of F (x) (the number of nodes in A

x

= fv : depth(v) � xg),

L(x) (the number of leaves in A

x

= fv : depth(v) � xg), and the minimum height of a tree

with n leaves and the 
ost C(T

n

) (resp. the 
ost of Varn 
odes of n words).

Let us des
ribe the analysis of F (x), that is, the number of nodes of depth no bigger than

x. It is easy to see that F (x) satis�es the following equation

F (x) =

8

>

<

>

:

1 + F (x� 


1

) + � � �+ F (x� 


r

) if x � 


1

1 if 0 � x � 


1

0 if x < 0:

This fun
tional equation 
an be solved either by using Lapla
e's transform or the Mellin

transform. The authors of [9℄ set x = ln t and d

i

= ln 


i

to redu
e the above equation to the

8



one on f(t) = F (ln t) for t > 1 that is a

essible by the Mellin transform approa
h. Indeed,

the Mellin transform f

�

(s) =

R

1

1

f(t)t

s�1

dt be
omes

f

�

(s) =

1

s(1� d

s

1

� � � � � d

s

r

)

for <(s) < �1. Using the inverse Mellin transform, one 
an extra
t the asymptoti
s of F (x)

as x!1. In parti
ular, it is proved in [9℄ that

� if (


1

; : : : ; 


r

) are rationally related (i.e., for all 1 � i; j � r the ratio 


i

=


j

is rational),

then

F (x) = D(x)'

x

+O(�

x

); x!1

where 1=' is the smallest positive solution of 1� z




1

� � � � � z




r

= 0 and � < ', and

D(x) =

d




(1� '

�d

)'

�dfx=dg

with d = g
d(


1

; : : : ; 


r

), 
 =

P

r

i=1




i

'

�


i

and fag = a� ba
 is the fra
tional part of a.

� if (


1

; : : : ; 


r

) are irrationally related (i.e., for some 1 � i; j � r the ratio 


i

=


j

is

irrational), then

F (x) =

1


 ln'

'

x

+ o('

x

)

as x!1.

6 Dynami
al Sour
es and Algorithms

It is a quite natural idea to 
onsider an algorithm together with its possible inputs as a

dynami
al system. The (dis
rete) time is related to the number of iterations. In what

follows we shortly review on the realization of this idea by B. Vall�ee and her 
ollaborators

[1, 7, 8, 10, 56, 58, 57℄.

One 
onsiders a dynami
al systems (or sour
es S) on a �nite or denumerable alphabet

M. Let T : (0; 1) ! (0; 1) be a mapping of the kind that there is a partition (I

m

: m 2 M)

of (0; 1) su
h that the restri
tion of T : I

Æ

m

! (0; 1) is a bije
tion (satisfying 
ertain analyti


properties). Then ea
h x 2 (0; 1) is asso
iated with an in�nite sequen
e (word)

M(x) = (M

1

(x);M

2

(x); : : :);

where M

j

(x) = m 2 M if T

j�1

(x) 2 I

m

. Furthermore there is a probability distribution on

(0; 1) so that one 
an 
onsider statisti
al properties of su
h dynami
al systems.

The key element of the whole analysis is a fun
tion �(s) (where s in a suitable 
omplex

neighborhood of the real interval I = [0; 1℄) whi
h is the largest eigenvalue of an appropriate

bounded 
ompa
t operator su
h that an analog of the Perron-Frobenius theory 
an be applied.

These operators are 
alled 
lassi
al G

s

(resp. generalized) Ruelle operators. For s = 1 the


lassi
al Ruelle operator G

1

is just the density transform operator on (0; 1) with respe
t to

the mapping T : (0; 1)! (0; 1) (see [57℄).

9



Two parameters are of parti
ular interest, namely the entropy h(S) and the 
oin
iden
e

probability (related to the se
ond order R�enyi entropy) 
(S). They are are related to �(s)

via h(S) = ��

0

(1) and 
(S) = �(2). For example, one asserts that the number B(x) of �nite

pre�xes of M(x) with probability � x is asymptoti
ally given by

B(x) �

�1

�

0

(1)

1

x

=

1

h(S)x

as x!1 (see [57℄).

One 
an apply dynami
 sour
es and this new methodology to the analysis of tries. In

su
h a 
ase, it is assumed that M(x) determines the in�nite strings of the data keys (see

[10℄). One obtains that the height H

n

of these random tries satis�es

EH

n

�

2

j log 
(S)j

logn

and

Pr[H

n

� k℄ = exp

�

�� 
(S)

k

n

2

�

+ o(1)

uniformly for all integers k � 0 as n!1 (where � > 0 is a 
onstant depending on the sour
e

and the initial density f). Furthermore, the average size of su
h a trie is approximately n=h(S)

and the average path length (the sum of all depth of leaves) is approximately n logn=h(S).

Another appli
ation of this 
on
ept is the analysis of generalized pattern mat
hings (\hid-

den patterns", see [7, 24℄) where the words are generated a

ording to a dynami
al sour
e.

The authors of [7℄ determine the mean and the varian
e of the number of o

urren
es in this

generalized pattern mat
hing problem, and establish a property of 
on
entration of distri-

butions. The motivation to study this problem 
omes from an attempt at �nding a reliable

threshold for intrusion dete
tions, from textual data pro
essing appli
ations, and from mole
-

ular biology.

Finally, Vall�ee and her 
ollaborators applied dynami
 sour
es to various versions of the

Eu
lidean algorithm (e.g. the binary Eu
lidean algorithm [56℄, the Lehmer-Eu
lid algorithm,

the �-Eu
lidean algorithm [8℄). Again the entropy h(S) governs the analysis of these algo-

rithms. For example, one obtains that the average number of iterations P

n

in the Eu
lidean

algorithm is given by

P

n

�

2

h(S)

logn

and the average bit 
omplexity C

n

be
omes

C

n

�

�

h(S)

log

2

n

as n!1, where the 
onstant � is related to the mean value of the digits.

7 The Random Assignment Problem

In this se
tion, we report on the solution of a long standing 
onje
ture 
on
erning the average

value of the random assignment problem due to David Aldous.

5

In the linear assignment

5

Aldous outlined his proof in his talk in Kryni
a Morska, 2002, on \Zeta(2) and the random assignment

problem".
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problem (LAP) a matrix fa

ij

g

n

i;j=1

is given and one asks for the best permutation � su
h that

A

n

= min

�

n

X

i=1

a

i;�(i)

:

In the random assignment problem the elements a

ij

are uniformly distributed in [0; 1℄. The

long standing open problem was to evaluate the average value EA

n

.

There is another model of the LAP problem. In this representation, a 
omplete bipartite

graph K

n;n

is given with random weights on edges that obey an exponential law of parameter

1. Let A

n

be the 
ost of a random assignment whi
h is the same as the 
ost of LAP. It has

long been 
onje
tured that

EA

n

!

n!1

�(2) =

1

X

k=1

1

k

2

: (10)

There is indeed a �nite version of the 
onje
ture, namely,

EA

n

=

n

X

k=1

1

k

2

: (11)

In fa
t, this problem has been open for some 20 years: Karp [30℄ proved in 1983 that EA

n

< 2;

Aldous [2℄ (1992) proved the existen
e of the limit � = limEA

n

and Goemans and Kodialam

[27℄ (1993) established that EA

n

is a little over 1 + e

�1

. Mezard and Parisi [35℄ have a

non rigorous argument based on ideas from statisti
al me
hani
s that EA

n

! �

2

=6. Aldous

developed the ideas of an approa
h to proving the in�nite n 
onje
ture{this by viewing it as

an in�nite mat
hing problem. This gives already the improved upper bound EA

n

� �(2) and

there was good hope that the in�nite n 
onje
ture will su

umb. Indeed, it did. After our

seminar Aldous submitted a 
omplete proof and it was re
ently published in [4℄.

There are several interesting points in Aldous' le
ture 
ommented by Philippe Flajolet in

his post-
onferen
e Resear
h Notes.

6

First, the general approa
h of the probabilisti
 meth-

ods 
onsists in designing an in�nite (
ontinuous) model in whi
h the �nite s
ale models are

immersed; see Aldous' 
ontinuum random tree [3℄. This is dual to analyti
-
ombinatorial

methods that aim at an exa
t modeling by generating fun
tion 
omplemented by subsequent

asymptoti
 analysis: \First approximate, then analyze!" versus \First analyze then approx-

imate!" Se
ond, Aldous spent quite some time during his talk advo
ating \pure thought"

proofs: this is the way he envisions the probabilisti
 approa
h. This made Flajolet wonders,

however, as to the amount of te
hnology that is needed. Flajolet's impression was that ev-

erything is in the eye of the beholder, and perhaps what is \pure thought" for some is hard

work for others? Conversely, perhaps, analysts should devote more time stru
turing proofs

by taking the \pure thought"motto as an inspiration?

A last fa
t regarding this motivating le
ture. One may 
onsider the analogous problem

of the 
ost of a minimal spanning tree of K

n

with edge weights that are uniform (0,1). Frieze

[26℄ showed in 1985 that the expe
ted 
ost tends to �(3) as n!1. Is there a �nite n version

of Frieze's result?

6

They were published in August 2000 on the AofA web page

http://pauilla
.inria.fr/algo/AofA/Resear
h/index.html.
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8 Coales
ing Saddle Points

We �nally 
omment on an analyti
 method that has appeared in several appli
ations, namely

on 
oales
ing saddle points and the Airy fun
tion.

7

For many years, there had been good

reason to suspe
t that Airy fun
tions play a role in quantifying 
ertain transition regions of

random 
ombinatori
s. The Airy fun
tion 
an be de�ned either as a solution of the di�erential

equation y

00

� zy = 0 or by the integral representation

Ai(z) =

1

2�

Z

+1

�1

e

i(zt+t

3

=3)

dt =

1

�3

2=3

1

X

n=0

�((n+ 1)=3)

n!

sin

�

2(n+ 1)�

3

�

�

3

1=3

z

�

n

: (12)

It is thus the prototype of integrals involving the exponential of a 
ubi
.

Many limit distributions of analyti
 
ombinatori
s are known to be attainable through

perturbation of a singularity analysis or a saddle point analysis. The approximations are of an

exponential quadrati
 form, e

�x

2

, whi
h usually leads to Gaussian laws. However, when there

is some 
on
uen
e of singularities or some \
oales
en
e" of saddle points, approximations of

a more 
ompli
ated form should be sought. Pre
isely, 
oales
en
e of two saddle points is

known in applied mathemati
s to lead to expressions involving the Airy fun
tion.

We �rst observe that some 
ompli
ations may arise with straightforward saddle point

method. For example, imagine that the integral I(n; �) de�ned

I(n; �) =

Z

f(z)e

�nh(z;�)

dz:

depends on the parameter � su
h that for � 6= �

0

there are two distin
t saddle points z

+

and z

�

of multipli
ity one. For � = �

0

these two points 
oin
ide to a single saddle point z

0

of multipli
ity two. Therefore, (under appropriate assumptions) for � 6= �

0

I(n; �) � f(z

+

)e

�nh(z

+

)

�

2�

nh

00

(z

+

)

�

1=2

+ f(z

�

)e

�nh(z

�

)

�

2�

nh

00

(z

�

)

�

1=2

:

For � = �

0

the asymptoti
 behavior of I(n; �

0

) di�ers radi
ally sin
e h

00

(z

0

) = 0. Then one

arrives at

I(n; �

0

) � Af(z

0

)e

�nh(z

0

)

�

�

4

3

��

3!

nh

000

(z

+

)

�

1=3

;

where A is a 
onstant that depend son the 
ontour of the integration. Thus the order of n


hanges dis
ontinuously from

1

2

to

1

3

. The interested reader is refereed to Wong [59℄ and [6℄

for more in depth dis
ussion.

Flajolet's talk in Kryni
a Morska fo
uses on the 
ase of random maps. Re
all that a

map is a 
onne
ted planar graph given together with a rigid embedding on the plane or the

Riemann sphere. Consider now the 
ore whi
h is the largest 2-
onne
ted 
omponent of a map

(this is in essen
e the largest submap obtained by breaking the original map at its arti
ulation

points). Then 
ore size admits a limiting distribution that has several surprising features: the

7

Philippe Flajolet talked in Kryni
a Morska, 2000, about \Random Maps and Airy Phenomena", based

on joint work with Cyril Banderier, Mi
hele Soria, and Gilles S
hae�er [6℄ published in the post-
onferen
e

spe
ial issue of Random Stru
tures & Algorithms. His talk was followed by talks of Mi
hele Soria and Gilles

S
hae�er on related subje
ts.
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tails are highly dissymmetri
, de
aying like x

�5=2

on the left and like e

�x

3

on the right. The

authors of [6℄ propose to 
all this distribution the map-Airy distribution: it arises pre
isely

from a 
on
uen
e of two saddle points (as seen via Lagrange inversion) or, equivalently, from

a 
ertain type of 
on
uen
e of singularities (in the realm of the original generating fun
tions)

and it involves the Airy fun
tion{when
e the name given to the distribution. Indeed, the

map-Airy distribution is found to have density

A(x) = 2 exp

�

�

2

3

x

3

�

�

xAi(x

2

)�Ai

0

(x

2

)

�

; (13)

and is, in disguise, a stable law of index

3

2

.

The next talk in Kryni
a Morska by Soria put these results into the more general frame-

work of 
omposition of singularity s
hemes. The �nal talk in this series by S
hae�er made

expli
it the generality of the approa
h. In fa
t a dozen or so types of maps exhibit the dis-

tribution (13)) and this has impli
ation in the fast random generation of maps with higher


onne
tivity indi
es. Finally, readers of these pages have already heard about the Airy fun
-

tion, e.g., in the 
ontext of linear probing hashing [54℄. As a matter of fa
t, there is good

hope to atta
k the evolution of the random graph G

n;m

(n verti
es andm edges) and of linear

probing hashed tables by means of 
oales
ing saddle points [25℄.
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