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Abstra
t

This is the �rst installment of the Algorithmi
s Column dedi
ated to Analysis of

Algorithms (AofA) that sometimes goes under the name Average-Case Analysis of Algo-

rithms or Mathemati
al Analysis of Algorithms. The area of analysis of algorithms (at

least, the way we understand it here) was born on July 27, 1963, when D. E. Knuth

wrote his \Notes on Open Addressing". Sin
e 1963 the �eld has been undergoing sub-

stantial 
hanges. We report here how it evolved sin
e then. For a long time this area

of resear
h did not have a real \home". But in 1993 the �rst seminar entirely devoted

to analysis of algorithms took pla
e in Dagstuhl, Germany. Sin
e then seven seminars

were organized, and in this 
olumn we brie
y summarize the �rst three meetings held in

S
hloss Dagstuhl (thus \Dagstuhl Period") and dis
uss various s
ienti�
 a
tivities that

took pla
e, des
ribing some resear
h problems, solutions, and open problems dis
ussed

during these meetings. In addition, we des
ribe three spe
ial issues dedi
ated to these

meetings.

1 Introdu
tion

The area of analysis of algorithms was born on July 27, 1963, when D. E. Knuth wrote his

\Notes on Open Addressing" about hashing tables with linear probing (
f. Knuth's notes

http://pauilla
.inria.fr/algo/AofA/Resear
h/sr
/knuth1trait-bwd.gif). The ele
-

troni
 journal Dis
rete Mathemati
s and Theoreti
al Computer S
ien
e (
f. the webside

http://dmt
s.loria.fr/) de�nes this area as follows:

Analysis of Algorithms is 
on
erned with a

urate estimates of 
omplex-

ity parameters of algorithms and aims at predi
ting the behaviour of a given

algorithm run in a given environment. It develops general methods for obtain-

ing 
losed-form formulae, asymptoti
 estimates, and probability distributions for


ombinatorial or probabilisti
 quantities, that are of interest in the optimiza-

tion of algorithms. Interest is also pla
ed on the methods themselves, whether


ombinatorial, probabilisti
, or analyti
. Combinatorial and statisti
al properties

of dis
rete stru
tures (strings, trees, tries, dags, graphs, and so on) as well as

mathemati
al obje
ts (e.g., 
ontinued fra
tions, polynomials, operators) that are

relevant to the design of eÆ
ient algorithms are investigated.

�
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In fa
t, the name \analysis of algorithms" did not emerge easily. D. E. Knuth, the founder

of the area, in the abstra
t of his talk \The Birth of the Giant Component" [16, 31℄ given

during the �rst Average Case Analysis of Algorithms Seminar, Dagstuhl, July 12 { 16, 1993

has the following to say:

The �rst few minutes of this talk 
onsidered \the birth of analysis of algorithms"

{ my personal experien
es from 31 years ago when I �rst noti
ed how pleasant

it is to �nd quantitative formulas that explain the performan
e 
hara
teristi
s

of important algorithms. Those experien
es profoundly 
hanged my life! I also

mentioned why it be
ame ne
essary to invent a name for su
h a
tivities.

We �nally settled on \Analysis of Algorithms" after 
onsidering \Pre
ise Analysis of Al-

gorithms", \Mathemati
al Analysis of Algorithms", and \Average{Case Analysis of Algo-

rithms".

Sin
e its in
eption in 1963 the �eld has been undergoing substantial 
hanges. We see

now the emergen
e of 
ombinatorial and asymptoti
 methods that allow the 
lassi�
ation of

data stru
tures into broad 
ategories that are amenable to a uni�ed treatment. Probabilisti


methods [2, 63℄ that have been so su

essful in the study of random graphs [3℄ and hard


ombinatorial optimization problems play an equally important role in this �eld. These

developments have two important 
onsequen
es for the analysis of algorithms: it be
omes

possible to predi
t average behavior under more general probabilisti
 models [45, 59, 63℄;

at the same time it be
omes possible to analyze mu
h more stru
turally 
omplex algorithms

[20, 23, 26, 27, 28, 29, 31, 32, 33, 34, 42, 37, 38, 39, 41, 43, 44, 51, 52, 55, 56, 57, 62, 64, 66℄. To

a
hieve these goals the analysis of algorithms draws on a number of bran
hes in mathemati
s:


ombinatori
s, probability theory, graph theory, real and 
omplex analysis, number theory

and o

asionally algebra, geometry, operations resear
h, and so forth.

This is the �rst 
olumn on the analysis of algorithms. Our goal is to des
ribe some

a
tivities in this area sin
e 1993 when the �rst workshop on analysis of algorithms took pla
e.

We brie
y des
ribe the �rst three seminars, outlining some presentations and dis
ussing in

depth some results published in three post{
onferen
e spe
ial issues. In the forth
oming

paper (Part II) we shall report about a
tivities after 1998.

2 Average-Case Analysis of Algorithms, Dagstuhl, 1993

In 1990 during the Random Graphs 
onferen
e in Pozna�n Philippe Flajolet, Rainer Kemp and

Helmut Prodinger de
ided to organize a seminar ex
lusively devoted to analysis of algorithms.

Su
h a workshop took pla
e in Dagstuhl, July 12 { July 16, 1993 with over thirty parti
ipants,

in
luding the founder of the area, D. E. Knuth. The organizers summarized this meeting in

the Dagstuhl Seminar Report [16℄, where one �nds the following quote:

This meeting was the �rst one ever to be dedi
ated ex
lusively to analysis of algo-

rithms. The number of invited parti
ipants was 37, of whi
h 30 gave presentations

of re
ent results summarized below. The talks 
ould be grouped roughly as deal-

ing with Methods or Appli
ations, both aspe
ts being often 
losely intertwined.
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Methods were well represented during the seminar. A
tually, the �rst talk by D. E. Knuth

on evolution of random graphs belongs to this 
ategory. This talk was the highlight of the


onferen
e, and we dwell a little bit on it. Knuth's presentation was based on an over hundred

page paper [31℄ published in Random Stru
tures & Algorithms 
o-authored by S. Janson, T.

 Lu
zak, and B. Pittel. (In a sense, this paper is a 
ontinuation of the work by Flajolet, Knuth

and Pittel [20℄ where analyti
 tools were used to study the �rst 
y
les in random graphs.) The

prin
ipal result of Knuth's paper is that an evolving graph or multigraph on n verti
es has

at most one 
omponent through its evolution with probability

5�

18

� 0:8727 as n!1. This

result is obtained by analyti
 tools of generating fun
tions and their fun
tional/di�erential

equations. For example, Knuth proves that the generating fun
tion G(w; z) for random

multigraphs satis�es

G(w; z) = e

z

+

1

2

Z

1

0

#

2

G(w; z)dw

where # is the operator z

�

�z

. Enumeration of this sort, together with 
ounting trees, uni
y
le


omponents and bi
y
li
 
omponents in random graphs are analyzed in Knuth's paper.

Throughout the presentation Knuth refers to the tree fun
tion de�ned as

T (z) = ze

T (z)

(1)

from whi
h, by Lagrange's inversion formula, we �nd

[z

n

℄T (z) =

n

n�1

n!

:

In the sequel, we shall use the standard notation [z

n

℄F (z) for the 
oeÆ
ient at z

n

of the power

series F (z). Of 
ourse, T (z) generates rooted labeled trees, but it arises in surprisingly many

appli
ations; it will appear many times in this arti
le. As a matter of fa
t, it was generalized

by Knuth and Pittel in [42℄ as well as in [31℄. Let

B(z; y) =

1

(1� T (z))

y

=

1

X

n=0

t

n

(y)

z

n

n!

; (2)

where t

n

(y) is a polynomial of degree n in y, 
alled the tree polynomial of order n. In

parti
ular,

t

n

(1) = n

n

:

Furthermore,

t

n

(2) = n

n

(1 + Q(n))

where

Q(n) =

n�1

X

k=1

n!

(n� k)!n

k

is the Ramanujan fun
tion studied in 1962 by Knuth and denoted by him as Q. Related

identities and fun
tions appear in an in
redible number of analyses: 
a
hing, hashing and

birthday paradox, random number generators and integer fa
torization (by Pollard's rho

method), and union-�nd algorithms. Lately, they were even used in sour
e and 
hannel


oding (
f. [24, 61, 62℄).
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To �nish our dis
ussion about Knuth's presentation, let us mention that another speaker

of the seminar, K. Compton, talked about \Ramanujan's Q-fun
tion and Asymptoti
s" and

its appli
ations to an analysis of a multipro
essing systems [7℄.

There were many other presentations in the Methods 
ategory. We mention here \The

Mellin Transform Te
hnology" by P. Flajolet and \Ramanujan and the Average Case Analysis

of Trie Parameters" by Kirs
henhofer and Prodinger. The �rst presentation found its way to

the spe
ial issue of Theoreti
al Computer S
ien
e that was published in 1995.

Appli
ations group was also well represented. Sedgewi
k talked about his and S
ha�er's

solution of a 20 years old problem 
on
erning the average-
ase analysis of heapsort [57℄. Valle�e

demonstrated how the latti
e redu
tion algorithm of Gauss 
an be pre
isely analyzed. Finally,

there were three talks related to the behavior of data 
ompression (Ja
quet, Szpankowski,

Vitter). For the �rst time a pre
ise analysis of the Lempel-Ziv 
ompression s
heme was

presented (we shall dis
uss it below in some depth).

During the seminar several open problems were dis
ussed; ten of them were re
orded in

the Dagstuhl Report [16℄. We des
ribe here only one that initiated a long term proje
t by

Mi
hael Drmota (see also Reed [54℄) who solved it �nally in 2000 [13, 14℄. (We 
ome ba
k

to it in Part II when we dis
uss the 2000 post-
onferen
e spe
ial issue.) The problem was

posed by P. Flajolet and we quote here from [16℄:

Lu
 Devroye [10℄ (
f. also [11℄) has used probabilisti
 arguments to show that

the expe
ted height of a random binary sear
h tree over n nodes is asymptoti


to 
 log n, where 
 is Robson's 
onstant (
 � 4:3). The problem 
an be re
ast in

analyti
 terms as follows: Let

y

h+1

(z) = 1 +

Z

z

0

y

2

h

(t)dt; y

0

(z) = 0; (3)

(so that y

1

(z) =

1

1�z

). Then the generating fun
tion of average heights

H(z) =

1

X

h=0

[y

1

(z)� y

h

(z)℄ (4)

satis�es

H(z) �




1� z

log

1

1� z

; z ! 1: (5)

The problem is to show this estimate in an extended area of the 
omplex plane.

Devroye's result follows from (5). A 
onsequen
e of an analyti
 proof of (5) should

be to derive estimates on the varian
e (the exa
t order is yet unknown) of height,

and most probably also a limiting distribution result.

It turned out that one needs more terms in (5) to obtain the 
onje
tured results 
on
erning

the varian
e and the limiting distribution. Indeed, the expe
ted value of the height followed

from (5), as proved by Drmota [13℄, however, for the varian
e (whi
h turns out to be bounded)

Drmota [14℄ and Reed [54℄ needed more terms of the asymptoti
 expansion of the height plus

additional 
on
entration properties. The limiting distribution is not yet proved rigorously,

however, a heuristi
 argument based on the WKB method was re
ently presented in [36℄.
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In 1995 H. Prodinger and W. Szpankowski edited a spe
ial issue entitled \Mathemati
al

Analysis of Algorithms" in Theoreti
al Computer S
ien
e, 144, No. 1-2. It was dedi
ated

to D. E. Knuth, the founding father of the area. This spe
ial issue was meant to be a post

Dagstuhl-seminar 
olle
tion of results, however, we advertised it in an open 
all for papers.

We a

epted 10 papers and Philippe Flajolet wrote an invited paper that we dis
uss in some

depth below, together with a few others.

In the invited paper [19℄ Flajolet and his 
olleagues X. Gourdon and P. Dumas present a

uni�ed and essentially self-
ontained approa
h to the Mellin transform. The Mellin transform

(Hjalmar Mellin 1854{1933, Finish mathemati
ian) is the most popular transform in analysis

of algorithms. It is de�ned for a real-valued fun
tion f(x) on (0;1) as

f

�

(s) =

Z

1

0

f(x)x

s�1

dx

provided the above integral exists, with s being a 
omplex number. D. E. Knuth, together

with De Bruijn, introdu
ed it in the orbit of dis
rete mathemati
s in the mid-1960s, however,

Flajolet's s
hool systematized and applied the Mellin transform to myriad problems of ana-

lyti
 
ombinatori
s and analysis of algorithms. The popularity of this transform stems from

two important properties. It allows the redu
tion of 
ertain fun
tional equations to algebrai


ones, and it provides a dire
t mapping between asymptoti
 expansions of a fun
tion near zero

or in�nity and the set of singularities of the transform in the 
omplex plane (
f. Table 1).

In analysis of algorithms and analyti
 
ombinatori
s one often deals with fun
tional equa-

tions like

f(x) = a(x) + �f(xp) + �f(xq); (6)

where �; � are 
onstants, and a(x) is a known fun
tion (e.g., think of the divide-and-
onquer

re
ursion or splitting pro
esses). The Mellin transform maps the above fun
tional equation

into an algebrai
 one that is easier to solve and hen
e allows us to re
over f(x), at least

asymptoti
ally as x ! 0 or x ! 1 (
f. property (M4) in Table 1). Indeed, the Mellin

transform of f(x) de�ned in (6) is

f

�

(s) = a

�

(s) + �p

�s

f

�

(s) + �q

�s

f

�

(s)

provided there is a strip in the 
omplex plane where f

�

(s) exists.

Flajolet and his 
olleagues 
on
entrate in [19℄ on sums like

G(x) =

1

X

k=0

�

1� e

�x=2

k

�

and H(x) =

1

X

k=1

(�1)

k

e

�k

2

x

log k;

whi
h are typi
al examples of a harmoni
 sum

X

k

a

k

f(b

k

x)

whose Mellin transform be
omes (
f. property (M3) in Table 1)

X

k

a

k

b

�s

k

f

�

(s):
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(M1) Dire
t and Inverse Mellin Transforms. Let 
 belong to the fundamental strip

de�ned below.

f

�

(s) := M(f(x); s) =

Z

1

0

f(x)x

s�1

dx () f(x) =

1

2�i

Z


+i1


�i1

f

�

(s)x

�s

ds: (7)

(M2) Fundamental Strip. The Mellin transform of f(x) exists in the fundamental strip

<(s) 2 (��;��), where

f(x) = O(x

�

) (x! 0); f(x) = O(x

�

) (x!1)

for � < �.

(M3) Harmoni
 Sum Property. By linearity and the s
ale rule M(f(ax); s) =

a

�s

M(f(x); s),

f(x) =

X

k�0

�

k

g(�

k

x) () f

�

(s) = g

�

(s)

X

k�0

�

k

�

�s

k

: (8)

(M4) Mapping Properties (Asymptoti
 expansion of f(x) and singularities of f

�

(s)).

f(x) =

X

(�;k)2A




�;k

x

�

(log x)

k

+ O(x

M

) () f

�

(s) �

X

(�;k)2A




�;k

(�1)

k

k!

(s + �)

k+1

: (9)

| (i) Dire
t Mapping. Assume that f(x) admits as x ! 0

+

the asymptoti
 expansion (9)

for some �M < �� and k > 0. Then for <(s) 2 (�M;��), the transform f

�

(s) satis�es the

singular expansion (9)

| (ii) Converse Mapping. Assume that f

�

(s) = O(jsj

�r

) with r > 1, as jsj ! 1 and

that f

�

(s) admits the singular expansion (9) for <(s) 2 (�M;��). Then f(x) satis�es the

asymptoti
 expansion (9) at x = 0

+

.

Table 1: Main Properties of the Mellin Transform.

From the inversion formula of the Mellin transform one obtains (
f. property (M1) in Table 1)

X

k

a

k

f(b

k

x) =

1

2�i

Z


+i1


�i1

X

k

a

k

b

�s

k

f

�

(s)x

�s

ds:

Shifting the line of integration and 
olle
ting all residues leads to the desired asymptoti
s of

the harmoni
 sum. This basi
 Mellin transform formula for harmoni
 sum is the starting point

for Flajolet and his 
olleagues to a readable a

ount on Mellin transform and its appli
ation

to analysis of algorithms (
f. also [22, 45, 63℄). For a summary of Mellin transform properties

the reader may 
onsult Table 1.

Finally, we say a few words about the Ja
quet and Szpankowski paper [28℄ that appeared

in the same spe
ial issue. It was devoted to the analysis of the Lempel-Ziv'78 data 
ompres-

sion s
heme, and its relation to digital sear
h trees. This s
heme partitions a sequen
e of
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length n into variable phrases su
h that a new phrase is the shortest substring not seen in

the past as a phrase. The parameter of interest is the number M

n

of phrases that one 
an


onstru
t from a sequen
e of length n. Its behavior determines the 
ompression ratio of this

s
heme. It was known that for stationary and ergodi
 sour
es

M

n

�

nh

logn

; (a:s:)

where h is the entropy of the sour
e. However, to gain more insights (e.g., to 
ompute the

average redundan
y of the 
ode as in [44℄) one needs more re�ned information about M

n

.

In parti
ular, Ziv asked in 1978 about the limiting distribution of M

n


onje
turing that it

must be normal. Aldous and Shields [1℄ solved the problem for memoryless unbiased sour
es

(i.e., ea
h symbol is generated by the same probability independently of others), however, the

authors of [1℄ insisted that \: : : we are not optimisti
 about �nding a general result. We believe

the diÆ
ulty of our normality result is intrinsi
 : : :". In fa
t, the authors of [1℄ were not able to

estimate pre
isely the varian
e due to some os
illation. The problem of varian
e was solved

by Kirs
henhofer, Prodinger, and Szpankowski [34℄, still for unbiased memoryless sour
es.

Ja
quet and Szpankowski set out to extend Aldous and Shields results to biased memoryless

sour
es. Not surprisingly, the method used by the authors of [28℄ was mostly analyti
, but

with a help from probabilisti
 methods (e.g., Billingsley's renewal lemma) needed to translate

analyti
 results obtained for digital sear
h trees to limiting distribution of the Lempel-Ziv

s
heme.

As mentioned above, the problem is redu
ed to �nding the limiting distribution of the total

path length in a digital sear
h tree built from independently generated strings. Let L(z; u) be

the bivariate probability generating fun
tion of the path length in the Poisson model in whi
h

the �xed number of strings is repla
ed by a random number of strings generated a

ording

to the Poisson distribution. It satis�es the following di�erential-fun
tional equation

�L(z; u)

�z

= L(pzu; u)L(qzu; u) (10)

with L(z; 0) = 1, where p (q = 1 � p) is the probability of generating a \0". Usually, the

Poisson model is easier to solve than the original Bernoulli model, but is far from being trivial.

In fa
t, it is known only how to obtain asymptoti
 results for the Poisson model for z !1 in

a 
one. On
e it is proved that logL(z; u) = �(z

�(u)

) for some fun
tion �(u) in a 
one around

the real axis (and all derivatives of L(z; u) with respe
t to u are proved to be bounded),

the Poisson model 
an be asymptoti
ally solved. Then the authors of [28℄ \wrestle" with a

parti
ularly 
ompli
ated depoissonization in order to translate the Poisson model ba
k to the

the Bernoulli model (for a more detailed exposition of analyti
 depoissonization the reader

is referred to [29℄). The �nal out
ome of this tour de for
e is a pretty 
omplete analysis of

the limiting distribution and well as the �rst two moments. The authors of [28℄ propose also

a large deviation result, however, the exa
t exponent is not determined (and is still an open

problem; see Conje
ture 1 below).

A
tually, we �nish this se
tion with an open problem regarding the analysis of the Lempel-

Ziv s
heme for a Markovian sour
e. We formulate it is a 
onje
ture.
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Conje
ture 1 Consider a (stationary, irredu
ible and aperiodi
) Markovian sour
e with

transition probabilities fp

ij

g

V

i;j=1

. Set �(x) =

x

H

log x �

A

H

x + O(log x) where A = 
 �

1 +

_

�(�1) +

�

�(�1)

2

_

�

2

(�1)

� #��

_

 (�1) + Æ

1

(lnm) with

_

�(s) and

�

�(s) are the �rst and the se
ond

derivative of the eigenve
tor �(s) of P (s) = fp

�s

ij

g

m

i;j=1

, while # is a 
onstant that we 
an

expli
itly 
ompute. De�ne x

n

as a solution of �(x

n

) = n, that is,

x

n

=

nH

log n

 

1 +

log log n

log n

+

A� logH

log n

+O

 

(log log n)

2

log

2

n

!!

:

Then

EM

k

n

= x

k

n

0

�

1 + O

0

�

s

log n

n

1

A

1

A

+ O

 

n

k�1

log

k�1

n

!

(11)

VarM

n

�




2

H

3

n

log

2

n

+ O(1); (12)

M

n

�EM

n

p

VarM

n

! N(0; 1); (13)

(14)

lim

n!1

1

n

log Pr

�

M

n

> �

�1

�

n

1� y

��

= �

I(y)

1� y

(15)

where 0 < y < 1 and I(y) is a fun
tion (at this point we still do not know how to 
ompute

this fun
tion). Moreover, moments of M

n


onverge to the appropriate moments of the normal

distribution.

The above formulas, ex
ept (15), are natural extensions of [28℄ and re
ent results pre-

sented in [30℄ 
on
erning the Lempel-Ziv phrase distribution for Markov sour
es. The large

deviation result (15) is not even proved for memoryless sour
es, however, based on known

large deviation results for other 
odes (
f. [49℄) we expe
t this formula to be true (provided

one �nds an expression for the exponent I(y)).

3 Average-Case Analysis of Algorithms, Dagstuhl, 1995

The se
ond Average-Case Analysis of Algorithms seminar took pla
e in Dagstuhl, July 3-7,

1995. It was organized by P. Flajolet, R. Kemp, H. Prodinger, and R. Sedgewi
k. In the

post-
onferen
e abstra
t [17℄ the organizers have the following to say:

The �eld is undergoing tangible 
hanges. We see now the emergen
e of 
ombi-

natorial and asymptoti
 methods that permit to 
lassify data models into broad


ategories that are sus
eptible of uni�ed treatment. This has two important 
onse-

quen
es for the analysis of algorithms; it be
omes possible to predi
t average-
ase

behavior of more 
omplex data models (for instan
e, nonuniform models and even

Markovian dependen
ies); at the same time it be
omes possible to analyze mu
h

more stru
turally 
omplex algorithms sin
e we have a mu
h higher level grasp on

the average-
ase analysis pro
ess.
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On the analyti
 side, there were talks on diagonal Poisson transform (Viola [51℄) and

analyti
 depoissonization (Ja
quet and Szpankowski [29℄). These tools of general nature are

strongly tied with the analysis of hashing and digital trees or data 
ompression. Tools for

extra
ting limiting distributions were dis
ussed by Drmota and Soria (
f. [15℄)

In Dagstuhl 1995 there were several talks on trees and their analyses (Flajolet, Hubalek,

Gittenberger, Prodinger, Steyaert). For example, in an interesting paper [52℄ \Solution of

a Problem of Yekutieli and Mandelbrot" H. Prodinger solved an open problem posed by

physi
ists. The author of [52℄ �rst reminded us that the register fun
tion of a binary tree

is de�ned re
ursively as follows: leaves get the register number equal to 0; while if a left

subtree was assigned the register number a and the right subtree the number b, then the

whole tree obtains the larger of these two, if there are di�erent, and a+ 1 if a = b. Yekutieli

and Mandelbrot asked the following question: if the tree has register fun
tion p, how many

maximal subtrees of register fun
tion p � 1 are there? Experiments indi
ated that the av-

erage value os
illates between 3 and 4. Using generating fun
tions, Mellin transforms and

singularity analysis Prodinger established in [52℄ the pre
ise value to be 3:341266 + Æ(log

4

n)

where Æ(log

4

n) is an os
illating fun
tion of small amplitude.

Finally, there were several talks on new appli
ations of analysis of algorithms: M. R�egnier

presented a pattern mat
hing approa
h for the DNA sequen
e analysis; G. Lou
hard dis
ussed


omputing with faulty pro
essors; parallel simulations were main topi
 of A. Greenberg's

talk; average-
ase analysis of pre�xes of formal languages was presented by R. Kemp; Rob-

son talked about simulation of trees; Gonnet about 
omputer algebra; Gardy des
ribed the

o

upan
y problem, and Wright spoke about parallel s
heduling.

The se
ond Dagstuhl meeting was 
oupled with a spe
ial issue of Random Stru
tures &

Algorithms, 10, No. 1-2, 1997 edited by P. Flajolet and W. Szpankowski. A. Frieze and C.

M
Diarmid in the invited paper \Algorithmi
 Theory of Random Graphs" dis
ussed how to

use random graphs as models for the average 
ase analysis of graph algorithms. The issue


ontains eleven a

epted papers on analysis of algorithms on (random) strings, trees, per-

mutations, words, and graphs. For example, random string models were dis
ussed in the

paper by Mahmoud, R�egnier and Smythe [47℄ who analyzed the Boyer-Moore pattern mat
h-

ing algorithm. Random permutations lie at the heart of all sorting and sear
hing algorithms.

Kirs
henhofer, Prodinger and Martinez [35℄ obtained a pre
ise analysis of \qui
ksele
t". Shell-

sort was analyzed by S. Janson and D. E. Knuth [32℄ who sharpened A. C. Yao's arguments to

obtain a re�ned analysis of the algorithm. Random trees, as expe
ted, were well represented

in the spe
ial issue. S
hmid [58℄ applied tree modes to the analysis of s
heduling in real

time systems. Finally, probabilisti
 methods were used by M
Diarmid, Johnson, and Stone

[48℄ to investigate the growth of a minimum spanning tree given random edge weights, while

Co�man, Johnson, Shor and Weber [5℄ developed probabilisti
 properties of random walks

to analyze the �rst-�t strategy for bin pa
king.

To wrap up this brief presentation, we say a few more words about an important paper

by Drmota [12℄ who in \Systems of Fun
tional Equations" dis
ussed asymptoti
 properties

of the 
oeÆ
ients of generating fun
tions satisfying a 
ertain system of fun
tional equations.

Standing on shoulders of Bender, Ri
hmond, Flajolet, and Odlyzko, Drmota is interested in

9



an analyti
 solution y(x; z) of the following (system of) fun
tional equation(s)

y = F (x; y; z): (16)

Examples of su
h equations are:

y(x; z) = xz +

xy(x; z)

1� y(x; z)

that represents the number of planted plane trees with given number of leaves; and

y(x; z) =

x

1� y(x; z)

� xy(x; z)

d

+ xzy(x; z)

d

whi
h is the generating fun
tion for the numbers y

n;k

of planted plane trees of size n and k

nodes of outdegree d. Drmota redu
es the analysis of (16) to the following form

y(x; z) = g(x; z) � h(x; z)

q

1� x=f(z)

with proper analyti
 fun
tions g(x; z), h(x; z), and f(z). This form is a 
onsequen
e of the

Weierstrass preparation theorem. In the next step Drmota applied the Flajolet and Odlyzko

[21℄ transfer theorem to obtain the asymptoti
s of y

n

(z) = [x

n

℄y(x; z). Finally, the saddle

point method applied to the Cau
hy formula 
ompleted the derivations.

In summary, Drmota proves that the 
oeÆ
ient (we deal here only with the one dimen-

sional 
ase) of

y(x; z) =

X

n;m

y

n;m

x

n

z

m

has the following asymptoti
 solution

y

n;m

=

ax

�n

0

2�n

2

p

2�

exp

 

(m� �n)

2

2n�

2

!

+ O(n

�1=2

)

where a; x

0

; � and � are 
ertain 
onstants. In the multidimensional 
ase one obtains a similar

expansion. The above formula is an example of a lo
al limit Gaussian approximation.

4 Average-Case Analysis of Algorithms, Dagstuhl, 1997

The third Average-Case Analysis of Algorithms seminar took pla
e in Dagstuhl, July 7-11,

1997. It was organized by P. Flajolet, R. Kemp, H. Mahmoud, and H. Prodinger. Twenty

eight talks were given ranging from methodologi
al to applied, 
overing su
h diverse prob-

lems as string mat
hing and 
omputational biology, hashing, tree data stru
tures, sele
tion

problems in statisti
s, data 
ompression and information-theory, adaptive data stru
tures

and learning, real-time and system programming, as well as 
omputer algebra. We dis
uss

some of them below.

Urn models were presented by Gardy who stressed their diverse appli
ations to hashing,

allo
ations or learning. Guy Lou
hard, a pioneer of the Brownian motion approa
h to analysis

of algorithms (
f. [43℄) used Brownian ex
ursion lo
al times to the analysis of random trees,

10



while Lu
 Devroye presented a unifying approa
h to the analysis of depth and height for

random sear
h trees.

Analyti
 
ombinatori
s were well represented in talks of Flajolet (on Gaussian laws),

Odlyzko (on 
onstrained set partitions) and Salvy (on automati
 saddle point methods).

Pattern in strings are of interest to a number of appli
ations su
h as retrieval, indexing,


omputational biology, sour
e 
oding, and so forth. Several talks were devoted to this topi
.

R�egnier presented a generalization of the Guibas and Odlyzko \auto
orrelation" to sequen
es

generated by Markovian sour
es (
f. [55℄). Nebel applied formal languages to an interesting

enumerative problem on strings. Vall�ee used dynami
 systems approa
h to analyze digital

tree for the so 
alled dynami
 sour
es (
f. [65℄).

As expe
ted, trees have attra
ted a lot of interest from AofA 
ommunity, however, 
om-

binatorial models still pose intriguing questions. Kemp analyzed balan
ed trees. Drmota had

the �rst \
ra
k" into the problem of height in a binary sear
h tree using analyti
 approa
h,

as suggested by Flajolet during the �rst Dagstuhl meeting. Mahmoud gave a solution to the

qui
ksele
t algorithm, whi
h 
an be viewed as a one-sided qui
ksort (a 
omplete analysis of

the regular qui
ksort problem is still needed). Finally, Bob Sedgewi
k surveyed some sixty

open problems introdu
ed by Knuth in his Vol. 3 and dis
ussed about twenty of them that

were solved. Three open problems were dis
ussed in detail, namely the average 
ase analysis

of shellsort, balan
ed trees, and development of sorting networks that are substantially better

than Bat
her's network.

In passing, we should mention that there were several talks illustrating appli
ations

of analysis of algorithms. Golin fo
used on 
omputational geometry, Fill dis
ussed self-

organizing sear
h, Co�man gave a talk on reservation poli
ies in 
ommuni
ation systems (
f.

[6℄, Ja
quet analyzed an on/o� queue, and S
hmid surveyed some re
ent results in real-time

systems (
f. [58℄).

We end this brief presentation with the highlight of the Dagstuhl 1997 meeting, namely

a de�nite solution to the varian
e analysis of linear probing hashing that was presented for

the �rst time by Poblete and Viola. This unfolding story has it 
ontinuation in the spe
ial

issue that we dis
uss next.

Following our tradition, we edited a spe
ial issue of Algorithmi
a, vol. 22, No. 2, 1998

(eds. H. Prodinger and W. Szpankowski), where we 
olle
ted more de�nite results presented

during the last AofA meeting. This was very \spe
ial" spe
ial issue. It was dedi
ated to \: : :

our 
olleague, tea
her, and friend Philippe Flajolet on the o

asion of his 50th birthday".

The editors prepared an arti
le on \Philippe Flajolet's Resear
h in Analysis of Algorithms"

[53℄ des
ribing Flajolet's a

omplishments in analysis of algorithms.

In my opinion this spe
ial issue was one of the best so far devoted to analysis of algorithms

that I was involved in. A number of resear
h results were published that solved long standing

open problems. In parti
ular, we dwell on two results, namely that of linear probing hashing

by Flajolet, Poblete, Viola [23℄ and Knuth [40℄, and (in Knuth's words) \an ex
iting paper"

[64℄ by Vall�ee who for the �rst time analyzed rigorously the binary Eu
lidean g
d algorithm

proving a 20-year old 
onje
ture of Brent.

Let us re
all that in linear probing hashing a table of length m is set up together with

a hash fun
tion h that maps n � m keys (randomly) to the m 
ells of the hash table. A
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olle
tion of n obje
ts (keys) enter sequentially into the hash table so that element x is pla
ed

at the �rst uno

upied lo
ation starting from h(x) in a 
y
li
 order. The displa
ement is the

number of 
ollisions until an uno

upied 
ell is found. The total displa
ement 
orresponding

to a sequen
e of hashed values is the sum of all individual displa
ement, and it is usually

denoted as d

m;n

. In his 1963 paper Knuth proved that

E[d

m;n

℄ =

n

2

(Q

0

(m;n� 1)� 1) (17)

where Q

r

(m;n) is the generalized Ramanujan's fun
tion de�ned as

Q

r

(m;n) =

X

k�0

 

r + k

k

!

n

m

n� 1

m

� � �

n� k + 1

m

:

Here are Knuth's personal remarks from [40℄ regarding this problem:

The problem of linear probing is near and dear to my heart, be
ause I found

it immensely satisfying to dedu
e (17) when I �rst studied the problem is 1962.

Linear probing was the �rst algorithm that I was able to analyze su

essfully,

and the experien
e had a signi�
ant e�e
t on my future 
areer as a 
omputer

s
ientist. None of the methods available in 1962 were powerful enough to dedu
e

the expe
ted square displa
ement, mu
h less the higher moments, so it is an even

greater pleasure to be able to derive su
h results today from other work that has

enri
hed the �eld of 
ombinatorial mathemati
s during a period of 35 years.

We end up this essay with a pretty detailed des
ription of the derivation that Knuth was

able to 
arry on after 35 years. In fa
t, we follow Knuth as well as Flajolet, Poblete and

Viola [23℄ whose analysis lead to a distribution of the total displa
ement.

The most interesting behavior of linear probing hashing o

urs when m = n or m = n�1

whi
h we shall 
all full and almost full tables, respe
tively. Here, we only 
onsider the 
ase

when n = m� 1 and write d

n

= d

n;n�1

. Using Knuth's 
ir
ular symmetry argument we shall

assume from now on that the nonempty 
ell is the rightmost one. De�ne F

n;k

as the number

of ways of 
reating an almost full table with n elements (with empty 
ell in the rightmost

lo
ation) and total displa
ement k. The bivariate generating fun
tion is denoted as

F (z; u) =

X

n;k�0

F

n;k

u

k

z

n

n!

:

Following Knuth [40℄, and Flajolet, Poblete and Viola [23℄ we observe that F

n

(u) = n![z

n

℄F (z; u)

satis�es

F

n

(u) =

n�1

X

k=0

 

n� 1

k

!

F

k

(u)(1 + u + � � �+ u

k

)F

n�1�k

(u):

Indeed, 
onsider an almost full table of size n (and length n+ 1 with the rightmost lo
ation

empty). Just before the last element is inserted there is another empty 
ell, say at position

k + 1. The address of the last element belongs to the interval [1::k + 1℄ whi
h 
orresponds

to the displa
ement in the interval [0::k℄. The above fun
tional equation follows. Observe
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also that after some simple algebra this equation satis�es the following di�erential-fun
tional

equation

�

�z

F (z; u) = F (z; u) �

F (z; u) � uF (uz; u)

1� u

(18)

for juj < 1. Then, denoting by F

hli

(z; 1) the lth derivative of F (z; u) at u = 1, the rth

fa
torial moment of d

n

is

E[d

n

(d

n

� 1) � � � (d

n

� r + 1)℄ =

[z

n

℄F

hri

(z; 1)

[z

n

℄F

h0i

(z; 1)

:

We must solve (18) in order to 
ompute the fa
torial moments. We shall follow now

Knuth's solution [40℄. After introdu
ing

A

n

(u) = (u� 1)

n

F

n

(u);

B

n

(u) = (u

n

� 1)A

n�1

(u);

we observe that the exponential generating fun
tions A(z; u) and B(z; u) satisfy

A(z; u) = e

B(z;u)

:

But C

n

(u) = A

n�1

(u) be
omes

B(z; u) = C(zu; u)� C(z; u);

and

C

0

z

(z; u) = A(z; u) = e

C(zu;u)�C(z;u)

:

Finally, the substitution G(z; u) = e

C(z;u)

leads to

G

0

z

(z; u) = G(zu; u)

whi
h translates into

u

n

G

n

(u) = G

n+1

(u):

Therefore,

G(z; u) =

1

X

n=0

u

n(n�1)=2

z

n

n!

;

and �nally (with u = 1 + w)

1

X

n=1

w

n�1

F

n�1

(1 + w)

z

n

n!

= ln

 

1

X

n=0

(1 + w)

n(n�1)=2

z

n

n!

!

: (19)

At this point Knuth observes that the right-hand side of (19) is the exponential generating

fun
tion for labeled 
onne
ted graphs. After introdu
ing the exponential generating fun
tion

W

k

(z) =

1

X

n=1

C

n�1+k;n

z

n

n!
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where C

m;n

is the number of 
onne
ted labeled graphs on n verti
es and m edges, Knuth


on
ludes that

F (z; 1 + w) = W

0

0

(z) + wW

0

1

(z) + w

2

W

0

2

(z) + � � � :

But W

k

(z) 
an be expressed in term of the tree-generating fun
tion T (z) de�ned in (1). Using

Wright's 
onstru
tion [67℄ (
f. also [31℄) Knuth �nally arrives at

F (z; 1 + w) =

T (z)

z

f(w; T (z))

where f(w; t) has the following leading terms

f(w; t) = 1 + w

t

2

2(1 � t)

2

+O(w

2

):

This allows to 
ompute all fa
torial moments of the total displa
ement. In parti
ular,

Var[d

n

℄ =

10� 3�

24

n

3

+

16� 3�

144

n

2

+ O(n

3=2

);

whi
h solves the 35 year old problem of Knuth. As a matter of fa
t, an exa
t formula

through the fun
tion Q

r

(m;n) on the varian
e 
an be derived as shown in [23, 40℄. Even

more, Flajolet, Poblete and Viola were able to prove that

d

n

(n=2)

3=2

has the Airy distribution.

I refer the interested reader to [23℄ for details of the derivations.

As a 
onsequen
e of the results presented in [23, 40℄, 
ombinatorial relationships between

total displa
ement in linear probing, 
onne
tivity in graphs, inversions in trees, area of ex
ur-

sions and path length in trees, were re-dis
overed and pla
ed in an uni�ed framework. This

initiated several new resear
h lines in the AofA 
ommunity, and will be further dis
ussed in

the forth
oming Part II of this arti
le.

Finally, we devote the last part of this survey to \an ex
iting paper" by B. Vall�ee [64℄

who 
ompleted the work of Brent [4℄ on the analysis of the binary greatest 
ommon divisor

(g
d) algorithm. Let us re
all that the Eu
lidean g
d algorithm �nds the greatest 
ommon

divisor of two integers, say u and v by using divisions and ex
hanges as below:

g
d(u; v) = g
d(v mod u; u):

Heilbronn and Dixon proved independently that the average number D

N

of divisions on

random inputs less than N is asymptoti
ally

D

n

�

12 log 2

�

2

logN:

However, there is a more eÆ
ient implementation of the Eu
lidean algorithm 
alled the

binary g
d that does not require divisions. It works as follows: Let

val

2

(u) := maxfb : 2

b

jug;

that is, the largest b su
h that 2

b

divides u. The binary Eu
lidean algorithm is based on the

following re
ursion

g
d(u; v) = g
d

�

u� v

2

val

2

(u�v)

; v

�

:
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The 
hallenge is to analyze the number of operations of this algorithm.

Vall�ee �rst redu
es the problem to a 
ontinued fra
tion expansion. Indeed, observe that

v = u + 2

b

1

v

1

; v

1

= u + 2

b

2

v

2

; v

l�1

= u + 2

b

l

v

l

represent the sequen
e of the shifts until the �rst inter
hange between u and v o

urs. If

k = b

1

+ b

2

+ � � �+ b

l

and

a = 1 + 2

b

1

+ � � �+ 2

b

1

+b

2

+���+b

l�1

;

then

u

v

=

1

a + 2

k

v

l

u

:

In general, the rational u=v has a unique 
ontinued fra
tion expression:

u

v

=

1

a

1

+

2

k

1

a

2

+

2

k

2

.

.

.

.

.

.

+

2

k

r�1

a

r

+ 2

k

r

:

The parameters of interest are:

� The height or the depth (it equals the number of ex
hanges); here, it is equal to r.

� The total number of operations that are ne
essary to obtain the expansion; if p(a)

denotes the number of 1 in the binary expansion of the integer a, it is equal to p(a

1

) +

p(a

2

) + : : : + p(a

r

) � 1; when the a

i

's are the denominators of the binary 
ontinued

fra
tion.

� The total sum of exponents of 2 in the numerators of the binary 
ontinued fra
tion:

here, it is equal to k

1

+ k

2

+ � � �+ k

r

.

Vall�ee analyzes these three parameters in a uniform manner using an operator 
alled now

the Vall�ee operator:

V

2

[f ℄(x) :=

X

k�1

X

a odd;

1�a<2

k

�

1

a + 2

k

x

�

2

f

�

1

a + 2

k

x

�

;

de�ned on a suitable Hardy spa
e of holomorphi
 fun
tions inside a disk that 
ontains the

real segment ℄0; 1℄. Vall�ee proves that all three parameters are asymptoti
 to A logN where

the 
onstant A depends on the dominant eigenve
tor of the operator V

2

.

Brie
y, Vall�ee uses various tools to prove her results su
h as generating fun
tions, Ruelle

operators, Tauberian methods, fun
tional analysis. First, she applies 
lassi
al tools of analysis

of algorithms, namely generating fun
tions whi
h in the 
ontext of 
omputational number

theory are Diri
hlet series. Se
ond, Vall�ee shows that these generating fun
tions are 
losely

linked to the operator

V

s

[f ℄(x) :=

X

k�1

X

a odd;

1�a<2

k

�

1

a + 2

k

x

�

s

f

�

1

a + 2

k

x

�
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whi
h is a Ruelle operator. More pre
isely, the generating fun
tions involve the quasi{inverse

operator �

s

:= (I � V

s

)

�1

, and the expe
tations of parameters of interest are partial sums

of 
oeÆ
ients of these Diri
hlet series. Thus the main results follow from an appli
ation of

Tauberian Theorems due to Delange, provided that they 
an be applied. Vall�ee proves this

is the 
ase by showing that the operator V

s

a
ting in a suitable Bana
h spa
e has a \spe
tral

gap", i.e. a unique dominant eigenvalue separated from the remainder of the spe
trum by a

gap. When a
ting on a Hardy spa
e of holomorphi
 fun
tions relative to a suitable disk, the

operator V

s

is proven to be 
ompa
t and positive for real values of parameter s, and then

it has a spe
tral gap. Sin
e Tauberian theorems link the asymptoti
s of 
oeÆ
ients to the

dominant singularity of the fun
tion, the 
onstant A involves the dominant singularity of the

quasi{inverse (I � V

s

)

�1

.

In summary, a 
onsequen
e is that the binary g
d algorithm has average-
ase 
omplex-

ity asymptoti
 to A logN , where A is a 
omputable 
onstant that is mathemati
ally well-


hara
terized in terms of spe
tral 
hara
teristi
s of Vall�e's operator.

5 Con
lusion

In this survey we brie
y reviewed the �rst three meetings in S
hloss Dagstuhl (so 
alled

\Dagstuhl Period") of the newly 
reated Analysis of Algorithms Group. We presented some

ideas, solutions, and dis
ussed some open problems. In Part II we shall des
ribe the next �ve

meetings of AofA that starting from 1998 be
ame annual events.

The emergen
e of AofA as an organized �eld of resear
h, whi
h began with the Dagstuhl

seminars, started a transformation from a 
olle
tion of results on individual problems to a

study of methods of general appli
ability, to an understanding of relationships to 
lassi
al

methods of analysis, 
ombinatori
s, and dis
rete probability, to a web of knowledge that

applies in a broad 
ontext.

As D. E. Knuth mentioned in the 
on
lusion of his paper [40℄, none of the methods

he used in his work on linear probing hashing were available in 1962. We are now in a

mu
h better situation. Knuth himself popularized the �eld in his three volumes of The Art

of Computer Programming [37, 38, 39℄, and quite re
ently in Sele
ted Papers on Analysis

of Algorithms [41℄. Sedgewi
k and Flajolet prepared the �rst undergraduate textbook [59℄

that is widely used. They are in the pro
ess of writing a monograph on Analyti
 Com-

binatori
s (
f. http://pauilla
.inria.fr/algo/flajolet/Publi
ations/books.html).

H. Hamoud and M. Hofri 
ontributed to popularizing the area by publishing �ne books

[25, 45, 46℄, while A. Odlyzko taught us in [50℄ the art of asymptoti
s. Finally, I myself put

up a book on Average Case Analysis of Algorithms on Sequen
es [63℄ devoted to probabilisti


and analyti
 methods used in analysis of algorithms. The reader is referred to these books

as a good starting point to learn more about our �eld.

In passing we should �nally add that in 1997 Philippe Flajolet and Helmut Prodinger

started a webpage of AofA. Everybody is invited to http://pauilla
.inria.fr//algo/AofA/

to read about fas
inating story about linear probing hashing, binary Eu
lidean algorithms,

wobbles in analysis of algorithms, and other new developments.
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