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Abstrat

This artile is a ontinuation of our previous Algorithmi Column [54℄ (EATCS, 77,

2002) dediated to ativities of the Analysis of Algorithms group during the \Dagstuhl{

Period" (1993{1997). The �rst three meetings took plae in Shloss Dagstuhl, Germany.

The next three meetings of AofA were in Prineton (1998), Barelona (1999), and Krynia

Morska (near Gda�nsk, 2000). We shall present here some researh problems that have

been the highlights of these three meetings. Three speial issues [42, 31, 43℄ were also

published after these meetings and we briey summarize them.

1 Introdution

The area of analysis of algorithms was born on July 27, 1963, when D. E. Knuth wrote his

\Notes on Open Addressing" about hashing tables with linear probing. Sine then the area

has been undergoing substantial hanges; we now use various methods from di�erent branhes

of mathematis: ombinatoris, probability theory, graph theory, real and omplex analysis,

number theory and oasionally algebra, geometry, operations researh, and so forth.

In 1993 the �rst meeting entirely devoted to the analysis of algorithms was organized by

P. Flajolet, R. Kemp and H. Prodinger at Shloss Dagstuhl (Germany). After that there

have been two further meetings in Dagstuhl (1995, 1997). Some of the researh ativities of

that time have been desribed in the �rst Algorithmi Column [54℄.

The emergene of AofA as an organized �eld of researh, whih began with the Dagstuhl

seminars and ontinues till nowadays, started a transformation from a olletion of results

on individual problems to a study of methods of general appliability, to an understanding

of relationships to lassial methods of analysis, ombinatoris, and disrete probability, to a

web of knowledge that applies in a broad ontext.

In this seond Algorithmis Column on analysis of algorithms we onentrate on ativi-

ties of the next tree meetings: Prineton (1998), Barelona (1999) and Krynia Morska (near

Gda�nsk, 2000). Most of the material we outline here is published in three speial issues: Al-

gorithmia, 29, 2001, [42℄, Algorithmia, 31, 2001 [31℄, and Random Strutures & Algorithms,

19, 2001, [43℄ (dediated to Don Knuth on the oasion of his (100)

8

th birthday).

�

This researh was supported in part by the NSF Grant CCR-0208709.
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2 The Contration Method for Reursive Algorithms

Reursive algorithms are popular tools in omputer siene. Quiksort is one of the most

prominent one. Reursive strutures are often subjet of preise mathematial analysis sine

usually a parameter of interest an be translated into reurrenes (e.g. the number of om-

parisons in Quiksort). Assuming that a properly normalized version of suh a parameter

has a limiting distribution (under a probabilisti model), the above reurrene may further

translate into a �xed point equation for the distribution. The main thrust of the ontration

method introdued by R�osler and R�ushendorf [51℄ is to solve suh a �xed point equation

using Banah's �xed point equation.

In what follows we desribe the ontration method when applied to the number of om-

parisons L

n

of Quiksort sorting n items. The reursive desription of Quiksort translates

to

1

L(L

n

) = L

�

L

Z

n

�1

+ L

n�Z

n

+ n� 1

�

; n � 2; (1)

where L

0

= L

1

= 0, L

2

= 1, Z

n

is uniformly distributed on f1; 2; : : : ; ng, L(L

j

) = L(L

j

), and

Z

n

, L

j

, L

j

(1 � j � n) are independent. For example, it is an easy exerise to obtain expliit

representations for the expeted value EL

n

. From (1) we �nd the reurrene

EL

n

= n� 1 +

1

n

n

X

j=1

(EL

j�1

+EL

n�j

)

that an be expliitly solved yielding

EL

n

= 2(n+ 1)

n+1

X

k=1

1

k

� 4(n+ 1) + 2

= 2n log n+ n(2 � 4) + 2 log n+ 2 + 1 +O(log n)=n)

with  = 0:57721::: being Euler's onstant.

Let us now onsider the random variable Y

n

= (L

n

�EL

n

)=n that satis�es the following

equation

L(Y

n

) = L

�

Y

Z

n

�1

Z

n

� 1

n

+ Y

n�Z

n

n� Z

n

n

+ 

n

(Z

n

)

�

; n � 2;

where Y

0

= Y

1

= 0, Z

n

is uniformly distributed on f1; 2; : : : ; ng, and L(Y

j

) = L(Y

j

), and Z

n

,

Y

j

, Y

j

(1 � j � n) are independent. Furthermore,



n

(j) =

n� 1

n

+

1

n

(EL

j�1

+EL

n�j

�EL

n

) :

Thus if Y

n

has a limiting distribution Y , then it has to satisfy

L(Y ) = L

�

UY + (1� U)Y + (U)

�

; (2)

where U is uniformly distributed on [0; 1℄, L(Y ) = L(Y ), U; Y ; Y are independent, and

(x) = 2x log x+ 2(1� x) log(1� x) + 1:

1

We denote by L(X) the distribution funtion of X.
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The �rst step is to show that (2) has atually a unique solution with EY = 0.

Let D denote the spae of distribution funtions with �nite seond moment and zero �rst

moment. Then the Wasserstein metri d

2

is de�ned as

d

2

(F;G) = inf kX � Y k

2

;

where k � k

2

denotes the L

2

-norm and the in�mum is taken over all random variables X with

distributions funtion F and all Y with distribution funtion G. It is well known that (D; d

2

)

onstitutes a Polish spae.

2

Let S : D ! D be a map de�ned by

S(F ) := L(UX + (1� U)X + (U));

where X;X;U are independent, L(X) = L(X) = F , and U is uniformly distributed on [0; 1℄.

Then one an show that S is a ontration with respet to the Wasserstein metri d

2

and,

thus, there is a unique �xed point F 2 D with S(F ) = F .

Indeed, let F;G 2 D and suppose that L(X) = L(X) = F , L(Y ) = L(Y ) = G, and

U is uniformly distributed on [0; 1℄ suh that U;X;X and U; Y ; Y are independent. Then

S(F ) = L(UX + (1�U)X + (U)) and S(G) = L(UY + (1�U)Y + (U)) and onsequently

d

2

2

(S(F ); S(G)) � kUX + (1� U)X � UY � (1� U)Y k

2

2

= kU(X � Y ) + (1� U)(X � Y )k

2

2

= E(X � Y )

2

�EU

2

+E(X � Y )

2

� E(1� U)

2

=

2

3

E(X � Y )

2

:

Taking the in�mum over all possible X;Y we obtain

d

2

(S(F ); S(G)) �

r

2

3

d

2

(F;G);

whih ompletes the proof that S is a ontration.

The �nal step is to show that Y

n

atually onverges to Y . We refer to [49℄ for details, but

it is suÆient to show that d

2

(L(Y

n

);L(Y ))! 0. In fat, R�osler [49℄ showed that

d

2

2

(L(Y

n

);L(Y )) �

2

n

n

X

j=1

�

j � 1

n

�

2

d

2

2

(L(Y

j�1

);L(Y )) +O

 

log

2

n

n

!

whih implies d

2

(L(Y

n

);L(Y )) ! 0. This ompletes the proof that the normalized number

of omparisons (L

n

�EL

n

)=n has a limiting distribution.

From the �xed point equation (2) it also possible to alulate all moments; e.g. the

variane of Y is given by

VarY = 7�

2

3

�

2

:

Note that the existene of a limiting distribution (the Quiksort distribution) was �rst

observed by R�egnier [45℄ via a martingale approah, whereas the haraterization of Y with

2

A sequene F

n

onverges to F in D if and only if F

n

onverges weakly to F and if the seond moments

of F

n

onverge to the seond moment of F .
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a �xed point equation is due to R�osler [49℄. It is now also known that there exists a density

([55℄), whih is a bounded C

1

funtion, tail estimates are available, and orders of onvergene

are estimated (ompare with [21, 22, 23, 32℄). However, no expliit representations for the

limiting distribution are known.

In passing, we should add that the ontration method has developed into to a very

powerful tool in the analysis of (reursive algorithms), see [11, 15, 29, 37, 38, 36, 39, 40, 50℄.

Finally, we also mention that Dobrow and Fill [17℄ used a similar approah to analyze the

path length of the so-alled reursive trees (this unfortunate term is due to Meir and Moon).

These are labelled non-plane trees whose labels inrease away from the root. The number of

suh trees is plainly (n � 1)! as an be seen from the fat that their exponential generating

funtion Y (x) satis�es

Y (z) =

Z

z

0

e

Y (t)

dt:

Symbolially one an read this as: \A tree is a root of minimal label (the

R

) to whih is

attahed a set (the e

Y

) of similar trees." Taking inspiration of Hennequin's and R�osler's

methods, Dobrow and Fill were able to show the existene of a limit distribution that has

interesting features not unlike the quiksort distribution. The struture of reursive trees is

also of interest as one of the early examples of a priority queue (i.e., a data struture based

on unbalaned heap-like trees).

3 The Height of Binary Searh Trees

A binary searh tree is a binary tree in whih eah node ontains a key, where the keys are

drawn from some totally ordered set, say f1; 2; : : : ; ng. The �rst key is stored in the root.

The next key is plaed either in the left hild of the root if its value smaller than the key

stored in the root or otherwise in the right hild. We repeat this proedure reursively until

all n keys are inserted into the tree. Observe that Quiksort an be viewed as building a

binary searh tree. In fat parameter L

n

disussed in the previous setion is also equal to

the total path length in the assoiated binary searh tree.

There are many interesting parameters of a binary searh tree built over randomly seleted

permutation of f1; 2; : : : ; ng. We mention here the depth of a key, the height (maximum

depth), the total path length, and others. The distribution of the height H

n

of suh a binary

searh tree turns out to be an interesting (and diÆult) problem. We briey desribe suh

an analysis, but we start with some history.

In 1986 Devroye [12℄ proved that the expeted value EH

n

satis�es the asymptoti relation

EH

n

�  log n (as n!1), where  = 4:31107 : : : is the (largest real) solution of the equation

 log

�

2e



�

= 1: (Earlier Pittel [41℄ had shown that H

n

= log n !  almost surely as n ! 1,

where  � , ompare also with Robson [46℄. Later Devroye [13℄ provided a �rst bound

for the error term, he proved H

n

�  log n = O(

p

logn log logn) in probability.) Based on

numerial data Robson onjetured that the variane VarH

n

is bounded. In fat, he ould

prove (see [47℄) that there is an in�nite subsequene for whih

EjH

n

�EH

n

j = O(1);
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and that his onjeture is equivalent to the assertion that the expeted value of the number of

nodes at level k = H

n

is bounded (see [48℄). The best bounds were given using two ompletely

di�erent methods by Devroye and Reed [16℄ and later by Drmota [18℄. They (both) proved

EH

n

=  log n+O(log logn) (3)

and

VarH

n

= E(H

n

�EH

n

)

2

= O((log log n)

2

):

Eventually, Reed [44℄

3

settled Robson's onjeture by showing that

VarH

n

= O(1) (n!1):

His approah is related to that of [16℄, but he also showed that

EH

n

=  log n�

3

2( � 1)

log log n+O(1): (4)

Reed's approah is purely probabilisti. An analyti proof of Robson's onjeture was given

(independently) by Drmota [19℄.

4

The analyti proof of Drmota pays o� sine some time later he was able to extend his

analysis and obtain the limiting distribution for the height. In [20℄ he uses a sequene of

funtions y

k

(x) de�ned as

y

k

(x) =

X

n�0

Pr[H

h

� k℄ � x

n

:

Then y

0

(x) � 1 and

y

k+1

(x) = 1 +

Z

x

0

y

k

(t)

2

dt: (5)

Obviously, y

k

(x) are polynomials of degree 2

k

� 1 and have a limit y(x) = 1=(1 � x) (for

0 � x < 1). The main result of [20℄ states

Pr[H

n

� k℄ = 	(n=y

k

(1)) + o(1) (n!1); (6)

where the o(1)-error term is uniform for all k � 0 and 	(y), y � 0, is a monotonially

dereasing funtion with 	(0) = 1 and lim

y!1

	(y) = 0 that satis�es the integral equation

y	(y=e

1=

) =

Z

y

0

	(z)	(y � z) dz: (7)

Furthermore, there exist onstants C; � > 0 suh that

Pr[jH

n

�EH

n

j � y℄ � Ce

��y

; (y > 0): (8)

Drmota's method is based on a areful analysis of (5). In partiular, if one sets

~y

k

(x) :=

Z

1

0

	(ye

�k=

)e

�y(1�x)

dy; (9)

3

Reed has also presented his result in Barelona, 1999.

4

Drmota talked on this topi in Prineton, 1998, and in Krynia Morska, 2000.
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then ~y

k

(0) = 1� o(1) and (7) translates to

~y

k+1

(x) = ~y

k+1

(0) +

Z

x

0

~y

k

(t)

2

dt:

Thus, the funtions ~y

k

(x) emulate the original funtions y

k

(x). The idea is to approximate

y

k

(x) by ~y

k

(x) Observe that

~y

k

(x) =

X

n�0

�

1

n!

Z

1

0

y

n

e

�y

	(ye

�k=

) dy

�

x

n

:

=

X

n�0

�

	

�

n

~y

k

(1)

�

+ o(1)

�

x

n

and then the resulting relation (6) is not unexpeted any more.

4 Random LC Tries

The primary purpose of a trie [28, 33, 34, 52, 53℄) is to store a set C of strings (words,

sequenes), say C = fX

1

; : : : ;X

n

g. Eah string is a �nite or in�nite sequene of symbols

taken from a �nite alphabet A = f!

1

; : : : ; !

V

g of size V = jAj. Strings are stored in leaves

of the trie. The trie over C is built reursively as follows: For jCj = 0, the trie is, of ourse,

empty. For jCj = 1, trie(C) is a single node. If jCj > 1, C is split into V subsets C

1

; C

2

; : : : ; C

V

so that a string is in C

j

if its �rst symbol is !

j

. The tries trie(C

1

); trie(C

2

); : : : ; trie(C

V

) are

onstruted in the same way exept that at the kth step, the splitting of sets is based on the

kth symbol. These subtrees are then onneted from their respetive roots to a single node

to reate trie(C). When a new string is inserted, the searh starts at the root and proeeds

down the tree as direted by the input symbols.

There are many possible variations of the trie. One suh variation is the b-trie, in whih

a leaf is allowed to hold as many as b strings. The b-trie is partiularly useful in algorithms

for extendible hashing in whih the apaity of a page or other storage unit is b. A seond

variation of the trie, the PATRICIA trie (Pratial Algorithm To Retrieve Information Coded

In Alphanumeri) eliminates the waste of spae aused by nodes having only one branh. This

is done by ollapsing one-way branhes into a single node.

Level Compression (LC) tries were introdued by Andersson and Nilsson [5℄. They are

further ompated versions of tries or PATRICIA tries. The following operation is repeated

reursively: at the root of the trie (or PATRICIA trie) T , �nd the highest omplete subtree

C (of height h). Let T

i

(1 � i � 2

h

) denote the subtrees rooted at level h. Replae T by the

root of T and the 2

h

subtrees T

i

. Repeat the above path ompression proedure reursively

for every T

i

. The resulting trie is alled LC trie (or LC PATRICIA trie). Note that the

number of hildren of eah node is a power of 2.

To analyze LC tries we assume throughout that data X

1

; : : : ;X

n

are drawn independently

and uniformly from [0; 1℄ (and the keys are just the binary expansions of X

i

). The quantities

of interest in a trie (or LC trie) are D

n

, the depth of the n-th string, A

n

, the typial depth

de�ned as A

n

=

1

n

P

n

i=1

D

i

, and H

n

, the height of the trie. Andersson and Nilsson [5℄ showed

that for suh probabilisti model (i.e., unbiased memoryless soure) the typial depth in LC

6



tries is A

n

= �(log

�

n), where log

�

n is the log-star funtion, de�ned as the minimum positive

integer i suh that i-th iterate log

2

log

2

� � � log

2

n � 1.

Devroye [14℄ substantially improved results of Andersson and Nilsson. He showed that

for LC tries and LC PATRICIA tries we have (under the uniform model), as n!1,

EA

n

� ED

n

� log

�

n:

Furthermore, he showed that

D

n

log

�

n

! 1

in probability,

H

n

log

2

n

! 1

in probability for the height of LC tries, and

H

n

p

2 log

2

n

! 1

in probability for the height of LC PATRICIA tries.

The proof is based on the property that in a random (PATRICIA) trie the �ll-up-level (the

number of onseutive full levels starting at the root) is about log

2

n�log

2

log

2

n in probability

(f. [53℄). Thus, all these levels are ompressed into one node in the orresponding LC trie.

The remaining subtrees are now of size about log

2

n. Hene, the �ll-up-level of these subtrees

is about log

2

log

2

n � log

2

log

2

log

2

n and so on. This heuristis shows that the number of

levels in the LC trie is approximately log

�

n.

These onsiderations also show that random tries in the uniform model onstitute very

well balaned binary trees, even if we look at the typial struture after the �ll-up-level. The

only puzzling thing is that the height of LC-tries is relatively large. For random tries the

height is about 2 log

2

n and for random LC tries about log

2

n. For random PATRICIA tries

the height is about log

2

n+

p

2 log

2

n and for random LC PATRICIA tries about

p

2 log

2

n.

This means that the LC-onstrution for tries only ompresses the �rst log

2

n levels to log

�

n

new levels whereas the remaining levels are not really e�eted by this proedure. There are

relatively few nodes at these higher levels beause the average depth is not a�eted but the

height is.

5 Lopsided Trees

In this setion, we briey desribe a remarkable ontribution of Choi and Golin [9℄ on lopsided

trees. Lopsided trees are ordered rooted r-ary trees in whih the length of the edge from a

parent to its i-th hild is 

i

(where 

1

� 

2

� � � � � 

r

). These kinds of trees model pre�x

odes, where di�erent letters may have di�erent osts. The total ost of suh pre�x odes

orresponds to the external path length of the orresponding lopsided tree. Espeially, one is

interested in Varn odes. Varn odes for n symbols are the minimal pre�x odes. Equivalently,

a Varn ode of n words orresponds to a lopsided tree with n external nodes and minimal

external path length.
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The main ontribution of this paper is the lassi�ation of the optimal struture and

analysis of suh trees T

n

with n external nodes. We �rst desribe the optimal onstrution:

One starts by labeling the nodes of an in�nite lopsided tree in order of inreasing depths.

Now, for any set V of nodes we denote by LEAF (V ) the set of nodes that are not in V but

their immediate anestor is in V . Furthermore, for n � jLEAF (V )j let LEAF

n

(V ) be the n

smallest labeled nodes in LEAF (V ) and set

T

m

n

= f1; 2; : : : ;mg [ LEAF

n

(f1; 2; : : : ;mg);

where d(n�1)=(r�1)e �m � n�1. Next, let l

0

; l

1

; l

2

; : : : denote the onseutive levels upon

whih nodes appear, i.e. l

0

= 0 and l

i

= minfdepth(v) : depth(v) > l

i�1

g, and let m

j

be the

number of nodes v with depth(v) � l

j

. Finally, set x

m

= (

P

m

i=1



i

) =(m� 1) (for r = 2; : : : ; r)

and let k � 2 be de�ned by

x

2

� x

3

� � � � � x

k�1

� x

k

< x

k+1

< � � � < x

r

:

With help of this notation we set

A

j

= fv 2 LEAF (V

m

j

) : depth(v) � l

j

+ x

k

g;

a

j

= jA

j

j,

B

j

= A

j

[ fv 2 LEAF (V

m

j

) : l

j

+ x

k

< depth(v) � l

j+1

+ x

k

g

and b

j

= jB

j

j.

The lassi�ation of optimal lopsided trees of size n is as follows:

1. If n = a

j

for some j � 0 then T

m

j

a

j

= V

m

j

[A

j

is an optimal lopsided tree.

2. If a

j

< n � b

j

for some j � 0 then T

b

j

n

and T

m

j

b

j

= V

m

j

[B

j

are optimal lopsided trees.

3. If b

j

< n � a

j+1

for some j � 0 then T

m

j

+p

n

is optimal if n = b

j

+ p(k � 1) and T

m

j

+p

n

or T

m

j

+p+1

n

is optimal if n = b

j

+ p(k � 1) + q for q < k � 1.

This haraterization an be also applied to formulate an algorithm to onstrut an op-

timal tree T

n

in O(n log r) time whih is better than previous algorithms.

After building the optimal trees, the authors of [9℄ analyze lopsided trees. In partiular,

they present asymptoti analysis of F (x) (the number of nodes in A

x

= fv : depth(v) � xg),

L(x) (the number of leaves in A

x

= fv : depth(v) � xg), and the minimum height of a tree

with n leaves and the ost C(T

n

) (resp. the ost of Varn odes of n words).

Let us desribe the analysis of F (x), that is, the number of nodes of depth no bigger than

x. It is easy to see that F (x) satis�es the following equation

F (x) =

8

>

<

>

:

1 + F (x� 

1

) + � � �+ F (x� 

r

) if x � 

1

1 if 0 � x � 

1

0 if x < 0:

This funtional equation an be solved either by using Laplae's transform or the Mellin

transform. The authors of [9℄ set x = ln t and d

i

= ln 

i

to redue the above equation to the
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one on f(t) = F (ln t) for t > 1 that is aessible by the Mellin transform approah. Indeed,

the Mellin transform f

�

(s) =

R

1

1

f(t)t

s�1

dt beomes

f

�

(s) =

1

s(1� d

s

1

� � � � � d

s

r

)

for <(s) < �1. Using the inverse Mellin transform, one an extrat the asymptotis of F (x)

as x!1. In partiular, it is proved in [9℄ that

� if (

1

; : : : ; 

r

) are rationally related (i.e., for all 1 � i; j � r the ratio 

i

=

j

is rational),

then

F (x) = D(x)'

x

+O(�

x

); x!1

where 1=' is the smallest positive solution of 1� z



1

� � � � � z



r

= 0 and � < ', and

D(x) =

d



(1� '

�d

)'

�dfx=dg

with d = gd(

1

; : : : ; 

r

),  =

P

r

i=1



i

'

�

i

and fag = a� ba is the frational part of a.

� if (

1

; : : : ; 

r

) are irrationally related (i.e., for some 1 � i; j � r the ratio 

i

=

j

is

irrational), then

F (x) =

1

 ln'

'

x

+ o('

x

)

as x!1.

6 Dynamial Soures and Algorithms

It is a quite natural idea to onsider an algorithm together with its possible inputs as a

dynamial system. The (disrete) time is related to the number of iterations. In what

follows we shortly review on the realization of this idea by B. Vall�ee and her ollaborators

[1, 7, 8, 10, 56, 58, 57℄.

One onsiders a dynamial systems (or soures S) on a �nite or denumerable alphabet

M. Let T : (0; 1) ! (0; 1) be a mapping of the kind that there is a partition (I

m

: m 2 M)

of (0; 1) suh that the restrition of T : I

Æ

m

! (0; 1) is a bijetion (satisfying ertain analyti

properties). Then eah x 2 (0; 1) is assoiated with an in�nite sequene (word)

M(x) = (M

1

(x);M

2

(x); : : :);

where M

j

(x) = m 2 M if T

j�1

(x) 2 I

m

. Furthermore there is a probability distribution on

(0; 1) so that one an onsider statistial properties of suh dynamial systems.

The key element of the whole analysis is a funtion �(s) (where s in a suitable omplex

neighborhood of the real interval I = [0; 1℄) whih is the largest eigenvalue of an appropriate

bounded ompat operator suh that an analog of the Perron-Frobenius theory an be applied.

These operators are alled lassial G

s

(resp. generalized) Ruelle operators. For s = 1 the

lassial Ruelle operator G

1

is just the density transform operator on (0; 1) with respet to

the mapping T : (0; 1)! (0; 1) (see [57℄).

9



Two parameters are of partiular interest, namely the entropy h(S) and the oinidene

probability (related to the seond order R�enyi entropy) (S). They are are related to �(s)

via h(S) = ��

0

(1) and (S) = �(2). For example, one asserts that the number B(x) of �nite

pre�xes of M(x) with probability � x is asymptotially given by

B(x) �

�1

�

0

(1)

1

x

=

1

h(S)x

as x!1 (see [57℄).

One an apply dynami soures and this new methodology to the analysis of tries. In

suh a ase, it is assumed that M(x) determines the in�nite strings of the data keys (see

[10℄). One obtains that the height H

n

of these random tries satis�es

EH

n

�

2

j log (S)j

logn

and

Pr[H

n

� k℄ = exp

�

�� (S)

k

n

2

�

+ o(1)

uniformly for all integers k � 0 as n!1 (where � > 0 is a onstant depending on the soure

and the initial density f). Furthermore, the average size of suh a trie is approximately n=h(S)

and the average path length (the sum of all depth of leaves) is approximately n logn=h(S).

Another appliation of this onept is the analysis of generalized pattern mathings (\hid-

den patterns", see [7, 24℄) where the words are generated aording to a dynamial soure.

The authors of [7℄ determine the mean and the variane of the number of ourrenes in this

generalized pattern mathing problem, and establish a property of onentration of distri-

butions. The motivation to study this problem omes from an attempt at �nding a reliable

threshold for intrusion detetions, from textual data proessing appliations, and from mole-

ular biology.

Finally, Vall�ee and her ollaborators applied dynami soures to various versions of the

Eulidean algorithm (e.g. the binary Eulidean algorithm [56℄, the Lehmer-Eulid algorithm,

the �-Eulidean algorithm [8℄). Again the entropy h(S) governs the analysis of these algo-

rithms. For example, one obtains that the average number of iterations P

n

in the Eulidean

algorithm is given by

P

n

�

2

h(S)

logn

and the average bit omplexity C

n

beomes

C

n

�

�

h(S)

log

2

n

as n!1, where the onstant � is related to the mean value of the digits.

7 The Random Assignment Problem

In this setion, we report on the solution of a long standing onjeture onerning the average

value of the random assignment problem due to David Aldous.

5

In the linear assignment

5

Aldous outlined his proof in his talk in Krynia Morska, 2002, on \Zeta(2) and the random assignment

problem".

10



problem (LAP) a matrix fa

ij

g

n

i;j=1

is given and one asks for the best permutation � suh that

A

n

= min

�

n

X

i=1

a

i;�(i)

:

In the random assignment problem the elements a

ij

are uniformly distributed in [0; 1℄. The

long standing open problem was to evaluate the average value EA

n

.

There is another model of the LAP problem. In this representation, a omplete bipartite

graph K

n;n

is given with random weights on edges that obey an exponential law of parameter

1. Let A

n

be the ost of a random assignment whih is the same as the ost of LAP. It has

long been onjetured that

EA

n

!

n!1

�(2) =

1

X

k=1

1

k

2

: (10)

There is indeed a �nite version of the onjeture, namely,

EA

n

=

n

X

k=1

1

k

2

: (11)

In fat, this problem has been open for some 20 years: Karp [30℄ proved in 1983 that EA

n

< 2;

Aldous [2℄ (1992) proved the existene of the limit � = limEA

n

and Goemans and Kodialam

[27℄ (1993) established that EA

n

is a little over 1 + e

�1

. Mezard and Parisi [35℄ have a

non rigorous argument based on ideas from statistial mehanis that EA

n

! �

2

=6. Aldous

developed the ideas of an approah to proving the in�nite n onjeture{this by viewing it as

an in�nite mathing problem. This gives already the improved upper bound EA

n

� �(2) and

there was good hope that the in�nite n onjeture will suumb. Indeed, it did. After our

seminar Aldous submitted a omplete proof and it was reently published in [4℄.

There are several interesting points in Aldous' leture ommented by Philippe Flajolet in

his post-onferene Researh Notes.

6

First, the general approah of the probabilisti meth-

ods onsists in designing an in�nite (ontinuous) model in whih the �nite sale models are

immersed; see Aldous' ontinuum random tree [3℄. This is dual to analyti-ombinatorial

methods that aim at an exat modeling by generating funtion omplemented by subsequent

asymptoti analysis: \First approximate, then analyze!" versus \First analyze then approx-

imate!" Seond, Aldous spent quite some time during his talk advoating \pure thought"

proofs: this is the way he envisions the probabilisti approah. This made Flajolet wonders,

however, as to the amount of tehnology that is needed. Flajolet's impression was that ev-

erything is in the eye of the beholder, and perhaps what is \pure thought" for some is hard

work for others? Conversely, perhaps, analysts should devote more time struturing proofs

by taking the \pure thought"motto as an inspiration?

A last fat regarding this motivating leture. One may onsider the analogous problem

of the ost of a minimal spanning tree of K

n

with edge weights that are uniform (0,1). Frieze

[26℄ showed in 1985 that the expeted ost tends to �(3) as n!1. Is there a �nite n version

of Frieze's result?

6

They were published in August 2000 on the AofA web page

http://pauilla.inria.fr/algo/AofA/Researh/index.html.
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8 Coalesing Saddle Points

We �nally omment on an analyti method that has appeared in several appliations, namely

on oalesing saddle points and the Airy funtion.

7

For many years, there had been good

reason to suspet that Airy funtions play a role in quantifying ertain transition regions of

random ombinatoris. The Airy funtion an be de�ned either as a solution of the di�erential

equation y

00

� zy = 0 or by the integral representation

Ai(z) =

1

2�

Z

+1

�1

e

i(zt+t

3

=3)

dt =

1

�3

2=3

1

X

n=0

�((n+ 1)=3)

n!

sin

�

2(n+ 1)�

3

�

�

3

1=3

z

�

n

: (12)

It is thus the prototype of integrals involving the exponential of a ubi.

Many limit distributions of analyti ombinatoris are known to be attainable through

perturbation of a singularity analysis or a saddle point analysis. The approximations are of an

exponential quadrati form, e

�x

2

, whih usually leads to Gaussian laws. However, when there

is some onuene of singularities or some \oalesene" of saddle points, approximations of

a more ompliated form should be sought. Preisely, oalesene of two saddle points is

known in applied mathematis to lead to expressions involving the Airy funtion.

We �rst observe that some ompliations may arise with straightforward saddle point

method. For example, imagine that the integral I(n; �) de�ned

I(n; �) =

Z

f(z)e

�nh(z;�)

dz:

depends on the parameter � suh that for � 6= �

0

there are two distint saddle points z

+

and z

�

of multipliity one. For � = �

0

these two points oinide to a single saddle point z

0

of multipliity two. Therefore, (under appropriate assumptions) for � 6= �

0

I(n; �) � f(z

+

)e

�nh(z

+

)

�

2�

nh

00

(z

+

)

�

1=2

+ f(z

�

)e

�nh(z

�

)

�

2�

nh

00

(z

�

)

�

1=2

:

For � = �

0

the asymptoti behavior of I(n; �

0

) di�ers radially sine h

00

(z

0

) = 0. Then one

arrives at

I(n; �

0

) � Af(z

0

)e

�nh(z

0

)

�

�

4

3

��

3!

nh

000

(z

+

)

�

1=3

;

where A is a onstant that depend son the ontour of the integration. Thus the order of n

hanges disontinuously from

1

2

to

1

3

. The interested reader is refereed to Wong [59℄ and [6℄

for more in depth disussion.

Flajolet's talk in Krynia Morska fouses on the ase of random maps. Reall that a

map is a onneted planar graph given together with a rigid embedding on the plane or the

Riemann sphere. Consider now the ore whih is the largest 2-onneted omponent of a map

(this is in essene the largest submap obtained by breaking the original map at its artiulation

points). Then ore size admits a limiting distribution that has several surprising features: the

7

Philippe Flajolet talked in Krynia Morska, 2000, about \Random Maps and Airy Phenomena", based

on joint work with Cyril Banderier, Mihele Soria, and Gilles Shae�er [6℄ published in the post-onferene

speial issue of Random Strutures & Algorithms. His talk was followed by talks of Mihele Soria and Gilles

Shae�er on related subjets.
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tails are highly dissymmetri, deaying like x

�5=2

on the left and like e

�x

3

on the right. The

authors of [6℄ propose to all this distribution the map-Airy distribution: it arises preisely

from a onuene of two saddle points (as seen via Lagrange inversion) or, equivalently, from

a ertain type of onuene of singularities (in the realm of the original generating funtions)

and it involves the Airy funtion{whene the name given to the distribution. Indeed, the

map-Airy distribution is found to have density

A(x) = 2 exp

�

�

2

3

x

3

�

�

xAi(x

2

)�Ai

0

(x

2

)

�

; (13)

and is, in disguise, a stable law of index

3

2

.

The next talk in Krynia Morska by Soria put these results into the more general frame-

work of omposition of singularity shemes. The �nal talk in this series by Shae�er made

expliit the generality of the approah. In fat a dozen or so types of maps exhibit the dis-

tribution (13)) and this has impliation in the fast random generation of maps with higher

onnetivity indies. Finally, readers of these pages have already heard about the Airy fun-

tion, e.g., in the ontext of linear probing hashing [54℄. As a matter of fat, there is good

hope to attak the evolution of the random graph G

n;m

(n verties andm edges) and of linear

probing hashed tables by means of oalesing saddle points [25℄.
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